Способы быстрого умножения и деления

Автор публикации:

Дата публикации:

Краткое описание: ...


Секреты быстрого умножения и деления

[pic]



1. Умножение и деление на 5, 50, 500 и т. д.


Умножение на 5, 50, 500 и т. д. заменяется умножением на 10, 100,1000 и т. д. с последующим делением на 2 полученного произведения (или делением на 2 и умножением на 10, 100, 1000 и т. д.). (50 = 100: 2 и т.д.)

54*5=(54*10):2=540:2=270 (54*5 = (54:2)*10= 270).

Чтобы число разделить на 5,50, 500 и т. д., надо это число разделить на 10,100,1000 и т. д. и умножить на 2.

10800 : 50 = 10800:100*2 =216

10800 : 50 = 10800*2:100 =216


2. Умножение и деление на 25, 250, 2500 и т. д.


Умножение на 25, 250, 2500 и т. д. заменяется умножением на 100,1000,10000 и т. д. и полученный результат разделить на 4. (25 = 100: 4)

542*25=(542*100):4=13550 (248*25=248: 4*100 = 6200)

(если число делится на 4, то выполнение умножения не занимает времени, любой ученик может выполнить).

Чтобы выполнить деление числа на 25, 25,250,2500 и т. д. это число надо разделить на 100,1000,10000 и т.д. и умножить на 4

31200: 25 = 31200:100*4 = 1248.


3. Умножение и деление на 125, 1250, 12500 и т. д.


Умножение на 125, 1250 и т. д. заменяется умножением на 1000, 10000 и т. д. и полученное произведение нужно делить на 8. (125 = 1000: 8)

72*125=72*1000:8=9000

Если число делится на 8, то сначала выполним деление на 8 , а потом умножение на 1000,10000 и т. д.

48*125 = 48:8*1000 = 6000

Чтобы разделить число на 125, 1250 и т.д., надо это число разделить на 1000, 10000 и т. д. и умножить на 8.

7000: 125 = 7000:1000*8 = 56.


4. Умножение и деление на 75, 750 и т. д.


Чтобы число умножить на 75, 750и т. д. надо это число разделить на 4 и умножить на 300, 3000 и т.д. (75 = 300: 4)

48* 75 = 48:4*300 = 3600

Чтобы число разделить на 75,750 и т. д. надо это число разделить на 300, 3000 и т.д. и умножить на 4

7200: 75 = 7200: 300*4 = 96.


5.Умножение на 15, 150.


При умножении на 15, если число нечетное, умножают его на 10 и прибавляют половину полученного произведения:

23х15=23х(10+5)=230+115=345;

если же число четное, то поступаем еще проще — к числу прибавляем его половину и результат умножаем на 10:

18х15=(18+9)х10=27х10=270.

При умножении числа на 150 пользуемся тем же приемом и умножаем результат на 10, т.к.150=15х10: 

24х150=((24+12)х10)х10=(36х10)х10=3600.

Точно так же быстро умножить двузначное число (особенно четное) на двузначное, оканчивающиеся на 5:

24*35 = 24*(30 +5) = 24*30+24:2*10 = 720+120=840.


6. Перемножение двузначных чисел, меньших, чем 20.


К одному из чисел надо прибавить количество единиц другого, эту сумму умножить на 10 и прибавить к ней произведение единиц данных чисел:

18х16=(18+6)х10+8х6= 240+48=288.  


 Описанным способом можно умножать двузначные числа, меньшие 20, а также числа, в которых одинаковое количество десятков: 23х24 = (23+4)х20+4х6=27х20+12=540+12=562.

Объяснение:

(10+a)*(10+b) = 100 + 10a + 10b + a*b = 10*(10+a+b) + a*b = 10*((10+a)+b) + a*b .


7.Умножение двузначного числа на 101.


Пожалуй, самое простое правило: припишите ваше число к самому себе. Умножение закончено.
Пример:

57 * 101 = 5757 57 --> 5757

Объяснение: (10a+b)*101 = 1010a + 101b = 1000a + 100b + 10a + b
Аналогично производят умножение трехзначных чисел на 1001, четырехзначных - на 10001 и т.п.


8. Умножение числа на 11.


Следует "раздвинуть" цифры числа, умножаемого на 11, и в образовавшийся промежуток вписать сумму этих цифр, причем если эта сумма больше 9, то, как при обычном сложении, следует единицу перенести в старший разряд.

Пример:
34 * 11 = 374, так как 3 + 4 = 7, семерку помещаем между тройкой и четверкой
68 * 11 = 748, так как 6 + 8 = 14, четверку помещаем между семеркой (шестерка плюс перенесенная единица) и восьмеркой

Объяснение:
10a+b - произвольное число, где a - число десятков, b - число единиц.

Имеем:
(10a+b)*11 = 10a*11 + b*11 = 110a + 11b = 100a + 10a + 10b + b = 100a + 10*(a+b) + b,
где мы имеем
a сотен, a+b десятков и b единиц. т.е. результат содержит a*(a+1) сотен, два десятка и пять единиц.

43625*11

Составляем произведение: 5 единиц, 5+2=7 десятки, 2+6=8 сотни, 6+3=9 тысячи, 3+4=7 десятки тысяч, 4 сотни тысяч.

43625*11=479875.

Когда множимое заключается в пределах 1000 и 10000 (например, 7543), то можно применить следующий способ умножения на 11.Сначала разбить множимое 7543 на грани, по две цифры, затем найти произведение первой грани (75) слева на 11, как указано в умножении двузначного числа на 11. Полученное число (75*11=725) даст сотни произведения, так как умножали сотни множимого. Потом надо умножить на 11 вторую грань (43), получим единицы произведения: 43*11=473. Наконец, полученные произведения сложим: 825 сот. +473=82739. Следовательно, 7543*11=82739.

Рассмотрим ещё пример: 8324*11.

83`24; 83 сот. *11=913 сот.

24*11=264; 913 сот. +264=91564. Следовательно, 8324*11=91564.


9. Умножение на 22, 33, …, 99.

Чтобы двузначное число умножить 22,33, …,99, надо этот множитель представить в виде произведения однозначного числа на 11. Выполнить умножение сначала на однозначное число, а потом на 11:

15 *33= 15*3*11=45*11=495.


10. Умножение двузначных чисел на 111.


Сначала возьмём множимым такое двузначное число, сумма цифр которого меньше 10. Поясним на числовых примерах:

45*111.

Так как 111=100+10+1, то 45*111=45*(100+10+1). При умножении двузначного числа, сумма цифр которого меньше 10, на 111, надо в середину между цифрами вставить два раза сумму цифр (т.е. чисел, ими изображаемых) его десятков и единиц 4+5=9. 4500+450+45=4995. Следовательно, 45*111=4995. Когда сумма цифр двузначного множимого больше или равна 10, например 68*11, надо сложить цифры множимого (6+8) и в середину между цифрами 6 и 8 вставить 2 раза единицы полученной суммы. Наконец, к составленному числу 6448 прибавить 1100. Следовательно, 68*111=7548.


11. Умножение на 37.


При умножении числа на 37, если данное число кратно 3,его делят на 3 и умножают на 111.

27*37=(27:3)*(37*3)=9*111=999

Если же данное число не кратно 3, то из произведения вычитают 37 или к произведению прибавляют 37.

23*37=(24-1)*37=(24:3)*(37*3)-37=888-37=851.


12. Возведение в квадрат любого двузначного числа.


Если запомнить квадраты всех чисел от 1 до 25, то легко найти и квадрат любого двузначного числа, превышающего 25.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю.

Рассмотрим пример:

372=12*100+132=1200+169=1369

(М–25)*100+ (50-M) 2=100M-2500+2500–100M+M2=M2 .


13. Умножение чисел, близких к 100.


 При увеличении (уменьшении) одного из множителей на несколько единиц умножаем полученное целое число и прибавленные (отнятые) единицы на другой множитель и  из первого произведения вычитаем второе произведение (полученные произведения складываем)

98∙8=(100-2) ∙8=100∙8-2∙8=800-16=784.

Данный прием представления одного из сомножителей в виде разности позволяет легко умножать на 9, 99, 999.

Для этого достаточно умножить число на 10 (100, 1000) и из полученного  целого числа вычесть число, которое умножали: 154х9=154х10-154=1540-154=1386.

Но еще проще ознакомить детей с правилом — «чтобы умножить число на 9 (99, 999)достаточно вычесть из этого числа число его десятков (сотен, тысяч), увеличенное на единицу, и к полученной разности приписать дополнение его цифры единиц до 10 (дополнение до 100 (1000) числа, образованного двумя (тремя) последними цифрами этого числа):

154х9=(154-16)х10+(10-4)=138х10+6=1380+6=1386


14. Умножение двузначных чисел, у которых сумма единиц равна 10.


Пусть даны два двузначных числа, у которых сумма равна 10:

М=10m + n, K=10a + 10 – n. Составим их произведение.

M * K= (10m+n) * (10a + 10 – n) =100am + 100m – 10mn + 10an + +10n – n2 = m * (a + 1) * 100 + n * (10a + 10 – n) – 10mn = (10m) * * (10 * (a + 1)) + n * (K – 10m).

Рассмотрим несколько примеров:

17 * 23= 10 * 30 + 7 * 13= 300 + 91= 391;

33 * 67= 30 * 70 + 3 * 37= 2100 + 111= 2211.


15 . Умножение на число, записанное одними девятками.


Для того чтобы найти произведение числа написанного одними девятками на число имеющее с ним одинаковое количество цифр надо от множителя отнять единицу и к получившемуся числу приписать другое число все цифры которого дополняют цифры указанного получившегося числа до 9.

8 * 9= 72;

46 * 99= 4554;

137 * 999= 136 863;

3562 * 9999= 35616438.

Наличие такого способа усматривается из следующего приёма решения приведённых примеров: 8 * 9= 8 * (10 – 1)= 80 – 8= 72,

46 * 99= 46 * (100 – 1)= 4600 – 54= 4554.


16. Возведение в квадрат числа, оканчивающееся на 5.


Число десятков умножаем на следующее число десятков и прибавляем 25.

15*15 = 225 = 10*20+ 25 ( или 1*2 и приписываем справа 25)

35*35 =30*40 +25= 1225 (3*4 и приписываем справа 25)

65*65 = 60*70+25=4225 (6*7 и приписываем справа 25)