Пояснительная записка
Рабочая программа по алгебре для обучающихся 7 класса составлена в соответствии с нормативными документами:
Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
Федеральный компонент государственных образовательных стандартов начального общего, основного общего, среднего (полного) общего образования (Приказ Минобр. России № 1019 от 5 марта 2004).
Примерная основная образовательная программа основного общего образования, одобренная Федеральным учебно-методическим объединением по общему образованию (протокол заседания от 8 апреля 2015 г. №1/15).
Фундаментальное ядро содержания общего образования/ Рос. акад. наук, Рос. акад. образования; под ред. В.В. Козлова, А.М. Кондакова. – М.: Просвещение, 2011;
с учётом:
5. Примерной программы по математике: Примерные программы по учебным предметам. Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011.
6. Программой к завершенной предметной линии учебников по математике для 7 класса под редакцией Ю.Н. Макарычева. Сборник программ, составитель Бурмистрова Т.А. Математика 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2011.
Общие цели образования с учётом специфики учебного предмета
Данный учебный курс занимает важное место в системе общего образования обучающихся, потому что определяется безусловной практической значимостью математики, ее возможностями в развитии и формировании мышления человека, ее вкладом в создание представлений о научных методах познания действительности.
Особенность построения курса состоит в том, что он обеспечивает преемственность курса математики 6 класса и курса алгебры в 7 классе, позволяет осуществлять разноуровневое обучение и качественную подготовку школьников к изучению алгебры в старших классах. Учебники содержат теоретический материал, написанный доступно, на высоком методическом уровне, а также систему упражнений, органически связанную с теорией. Приводимые образцы решения задач, пошаговое нарастание сложности заданий, сквозная линия повторения – все это позволяет учащимся успешно овладеть новыми умениями. В учебник включены сведения из статистики и теории вероятностей. Учебники ориентированы на решение задач предпрофильного обучения. Усилена прикладная направленность курса, обновлена тематика текстовых задач, увеличено число задач развивающего характера, включены задания в тестовой форме.
Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Алгебра нацелена на формирование математического аппарата для решения задач из математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.).
В задачи обучения математики входит:
овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
овладение навыками дедуктивных рассуждений;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, необходимой, в частности, для освоения курса информатики;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и т.д.);
воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.
Общая характеристика учебного предмета
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Элементы логики, комбинаторики, статистики и теории вероятности стали обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер реальных зависимостей, производить простейшие вероятностные расчеты. Изучение снов комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
• развивать представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развивать вычислительную культуру;
• овладеть символическим языком алгебры, выработать формально оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
• изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
• развивать пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
• получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
• развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контр примеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
• сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Описание места учебного предмета, курса в учебном плане
Федеральный базисный учебный план для образовательных учреждений Российской Федерации предусматривает обязательное изучение алгебры в 7 классе в объеме 140 часов, 4 часа в неделю.
Результаты освоения учебного предмета
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
Личностные результаты:
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
Метапредметные результаты:
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Предметные результаты:
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;
овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;
овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
В ходе освоения содержания ученик научится… В ходе освоения содержания ученик получит возможность…
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с натуральными показателями и с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
Способы оценки планируемых результатов образовательного процесса
Результаты образовательного процесса Формы контроля
Метапредметные
Мультимедийная презентация.
Устное монологическое высказывание по теме.
Устное диалогическое высказывание по теме.
Письменное высказывание по теме ( сочинение, заполнение диаграмм и таблиц, статей из энциклопедий).
Комплексные работы на межпредметной основе.
Предметные
Тесты (вводные, итоговые, тематические).
Личностные
Неперсонифицированные диагностические работы, результаты наблюдения, самооценка ученика по принятым формам (например, лист с вопросами по саморефлексии конкретной деятельности).
Содержание учебного предмета
1. Выражения, тождества, уравнения
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки [pic] и [pic] дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том, же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическими, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.
2. Функции
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.
Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где k0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kх + b
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
3. Степень с натуральным показателем
Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.
Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств аm • аn = аm +n , аm : аn = аm-n где m > n, (аm)п = аmn, (аb)п = аnbn учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2 : график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.
4. Многочлены
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
5. Формулы сокращенного умножения
Формулы (а ± b)2 = а2 ± 2аb + b2, (а ± b)3 = а3 ± 3а2Ь + Заb2 ± b3, (а ± b) (а2 аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.
Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - Ь2, (а ± b)2 = а2 + 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».
Наряду с указанными рассматриваются также формулы (a ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 = (а + b) (а2 аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
6. Системы линейных уравнений
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения а + bу = с, где а 0 или Ь 0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.
Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
7.Повторение
Тематический план курса с определением основных видов учебной деятельности
Основные разделы
Количество часов
Количество
Контрольных работ
1.
Глава 1. Выражения, тождества, уравнения.
28
2 + входная
2.
Глава 2. Функции.
18
1
3.
Глава 3. Степень с натуральным показателем.
20
1 +полугодовая
4.
Глава 4. Многочлены.
23
2
5.
Глава 5. Формулы сокращенного умножения.
23
2
Глава 6. Системы линейных уравнений.
17
1
Повторение.
11
1 - итоговая
1 полугодие
64
2 полугодие
76
Итого:
140
12
Перечень учебно-методического и материально-технического обеспечения образовательного процесса в соответствии с содержанием учебного предмета
Программа к завершённой предметной линии и системе учебников Сборник программ, составитель Бурмистрова Т.А. Математика 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2011
Учебник, учебное пособие
Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова Учебник алгебра 7-М.: Просвещение, 2010
Рабочая тетрадь для обучающихся
Электронное приложение к УМК
Дидактический материал
Дидактические материалы по алгебре для 7 класса/ Звавич Л.И., Кузнецова Л.В., Суворова С.Б. – М.: Просвешение, 2008
Материалы для контроля (тесты и т.п.)
Миндюк М.Б., Миндюк Н.Г. Разноуровневые дидактические материалы по алгебре. 7 класс — М.: Издательский дом «Генжер», 2005.
Звавич Л.И., Шляпочник Л.Я. Контрольные и проверочные работы по алгебре. 7-9 класс: Методическое пособие.- М.: Дрофа, 2009.
Н.Б. Васюк, Ф.А. Пчелинцев, А.Б. Уединов, П.В. Чулков. Алгебра 7 класс. Тесты -М.: «Издат-школа», 2008г.
4. Контрольно измерительные материалы. Алгебра 7 (Сост. Л.И. Мартышова) М. 2011.
Методическое пособие с поурочными разработками
В.И. Жохов, Л.Б. Крайнева. Уроки алгебры в 7 классе. М.: Вербум – М., 2009г.
Поурочные планы. 7 класс. Волгоград: Учитель,2015.
Список используемой литературы
Левитас Г.Г. Карточки для коррекции знаний по математике для 7 класса –М. Илекса, 2010 г.
Пичурин Л.Ф. За страницами учебника алгебры: Книга для учащихся 7-9 классов средней школы. –М.: Просвещение, 2010.
Цифровые и электронные образовательные ресурсы
Единая коллекция цифровых образовательных ресурсов. Коллекция разнообразных ЦОР в различных форматах [link]
Фронтальная – ответы на вопросы, комментирование решений.
10