ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
В результате изучения курса алгебры в 8б классе учащийся научится
знать/понимать:
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;
уметь:
выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах; составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения; решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи; изображать числа точками на координатной прямой; определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства; распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей; определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики; извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений; находить частоту события, используя собственные наблюдения и готовые статистические данные; находить вероятности случайных событий в простейших случаях;
владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной;
Решать следующие жизненно-практические задачи:
самостоятельно приобретать и применять знания в различных ситуациях; работать в группах; аргументировать и отстаивать свою точку зрения;
уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов; пользоваться предметным указателем энциклопедий и справочников для нахождения информации; самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Повторение курса алгебры 7 класса 6 ч. Раскрытие скобок. Решение текстовых задач с помощью уравнений. Формулы сокращенного умножения .Разложение на множители .Решение систем уравнений.
Алгебраические дроби. 25 ч. Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления). Степень с отрицательным целым показателем.
Функция у = √х. Свойства квадратного корня 23 ч. Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция у =, ее свойства и график. Выпуклость функции. Область значений функции. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции у = \х\. Формула -\/х2= \х\.
Квадратичная функция. Функция у = k/x. 23 ч. Функция у = ах2, ее график, свойства. Функция у = ах2, ее график, свойства. Функция у = k/x, ее свойства, график. Гипербола. Асимптота.
Построение графиков функций у = f (x + l), у = f(x) + т, у = f (x + L) + т, у = -f(x) по известному графику функции у = f(x). Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций у= С, у = kх + т, у = k/x, у = ах2+ bх + с, у = , у = \х\. Графическое решение квадратных уравнений.
Квадратные уравнения 22 ч. Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное
уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата. Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления). Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной. Рациональные уравнения как математические модели реальных ситуаций. Частные случаи формулы корней квадратного уравнения. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Иррациональное уравнение. Метод возведения в квадрат.
Неравенства 16ч.Свойства числовых неравенств. Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства. Квадратное неравенство. Алгоритм решения квадратного неравенства. Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств). Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.
Элементы комбинаторики 6 ч. Простейшие комбинаторные задачи. Перебор возможных вариантов для пересчета объектов и комбинаций. Дерево вариантов. Правило комбинаторного умножения.
Обобщающее повторение 16 ч.
3