Рабочая программа внеурочной деятельности по математике 5 класса

Автор публикации:

Дата публикации:

Краткое описание: ...




Муниципальное бюджетное общеобразовательное учреждение

Октябрьская средняя общеобразовательная школа

Змеиногорского района Алтайского края



«Согласовано»

Руководитель МО учителей

естественно-математического цикла

___________ Аверкина Н.В.

Протокол №_______ от

«____»____________2016г.

«Согласовано»

Заместитель директора по УВР

____________ Гайворонских М.О.

«____»____________ 2016г.

Утверждаю

Директор школы

________ Вальдер О.Н.

Приказ №_____ от

«____» ________ 2016г.




РАБОЧАЯ ПРОГРАММА

внеурочного курса по математике

«Математическая мозаика»

5 класс

( основное общее образование, базовый уровень)

на 2016-2017 учебный год





Составитель: Аверкина Наталья Васильевна

учитель математики


п. Октябрьский 2016 г.

Пояснительная записка

Рабочая программа курс «Математическая мозаика» составлена на основе нормативно-правовой базы:

Закон РФ «Об образовании»;

Устав школы;

Основная образовательная программа основного общего образования школы.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования 2-го поколения.


Программа курса «Математическая мозаика» для 5 класса относится к научно-познавательному направлению реализации внеурочной деятельности в рамках ФГОС.

Актуальность программы определена тем, что младшие школьники должны иметь мотивацию к обучению математики, стремиться развивать свои интеллектуальные возможности.

Данная программа позволяет учащимся ознакомиться со многими интересными вопросами математики на данном этапе обучения, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки. Решение математических задач, связанных с логическим мышлением закрепит интерес детей к познавательной деятельности, будет способствовать развитию мыслительных операций и общему интеллектуальному развитию. У учащихся будут развиваться умения самостоятельно работать, думать, решать творческие задачи, а также совершенствовать навыки  аргументации собственной позиции по определенному вопросу. Занятия  кружка будут содействовать развитию у детей математического образа мышления: краткости речи, умелому использованию символики, правильному применению математической терминологии и т.д.
Программа содержит материал, как занимательного характера, так и дополняющий, расширяющий программу общеобразовательной школы по математике. Большое внимание в программе  уделяется истории математики и рассказам, связанным с математикой, выполнению самостоятельных заданий творческого характера, изучению различных арифметических методов решения задач, выполнению проектных работ. Уделяется внимание рассмотрению геометрического материала, развитию пространственного воображения. 

Все вопросы и задания рассчитаны на работу учащихся на занятии. Для эффективности работы  предусматривается работа в малых группах с опорой на индивидуальную деятельность, с последующим общим обсуждением полученных результатов. Такая форма организации позволит учащимся ознакомиться со многими интересными вопросами математики на данном этапе обучения, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки. Дети получат профессиональные навыки, которые способствуют дальнейшей социально-бытовой и профессионально-трудовой адаптации в обществе. Решение математических задач, связанных с логическим мышлением закрепит интерес детей к познавательной деятельности, будет способствовать развитию мыслительных операций и общему интеллектуальному развитию.

Программа курса рассчитана на 35 часов (1 ч в неделю).

В ходе реализации программы курса «Математическая мозаика»

используются беседы, практикумы по решению задач, игровые формы занятий – турниры, конкурсы, олимпиады; самостоятельная работа учащихся со справочной литературой.

Цель: создать условия для развития устойчивого интереса обучающихся к математике
Задачи:
-
расширение кругозора учащихся в различных областях элементарной математики;
- расширение математических знания в области многозначных чисел;

- активизация познавательной деятельности;
- показ универсальности математики и её места среди наук;

- формирование исследовательских умений учащихся;

- воспитание отношения к математике как к части общечеловеческой культуры.

Результаты освоения курса внеурочной деятельности




Метапредметными результатами являются первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.


Предметными результатами являются следующие умения:

  • уметь применять новые приемы устного счета;

  • уметь применять свойства чисел, свойства четных и нечетных чисел;

  • составлять выражения;

  • уметь решать задачи на взвешивание, переливание, уравнивание, задачи на части и движение;

  • уметь решать задачи на принцип Дирихле;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- уметь решать задачи с простейшими геометрическими фигурами;

- решать задачи на разрезание фигур, задачи на клетчатой бумаге;

- решать задачи со спичками;

- решать головоломки;

- решать задачи на вычисление длины, площади, объема;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


Регулятивные УУД:


– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.



Познавательные УУД:


анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Коммуникативные УУД:


– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.































































Содержание курса

Введение (1 ч)

Ознакомление с программой курса.


История развития математики (4 часа)

Нумерация у разных народов: иероглифическая система древних египтян, арабские и римские цифры, алфавитные системы. Системы счисления. История открытия нуля. Числа на Руси. История формирования системы мер: измерения в древности, старинные русские меры, метрическая система мер, неметрические системы мер. Математики древности – Пифагор, Евклид, Гипатия Александрийская, Архимед, Эратосфен. Русские математики – Софья Ковалевская, Николай Лобачевский, Леонтий Магницкий, и др.


Цифры и числа (5 часов)

Фигурные числа, дружественные и совершенные числа, простые и составные числа, числа – карлики и числа – великаны. Числовые выражения, ребусы, головоломки. Приемы быстрого счета. Числовые игры.


Делимость и остатки (4 часа)

Свойства делимости. Признаки делимости на 2, 3, 4, 5, 9, 10, 11. Делимость чисел на 7 и на 13. Остатки. Свойства четных и нечетных чисел, их применение при решении задач.



Принцип Дирихле (4 часа)

Принцип Дирихле. Применение принципа Дирихле при решении задач на доказательство. Решение задач на доказательство «худшего» случая.



Геометрия на плоскости и в пространстве (6 часов)

Магические квадраты. Рисование фигур на клетчатой бумаге. Рисование фигур одним росчерком пера. Разрезание фигур на равные части. Составление паркета из фигур пентамино. Куб. Прямоугольный параллелепипед. Применение метода «упорядоченного перебора» при решении задач.


Математическая смесь (9 часов)

Способы решения логических задач, задач со сказочным сюжетом. Переливания, перекладывания и взвешивания. Пересечение и объединение. Круги Эйлера. Сложные задачи «на движение». Задачи-шутки. Решение задач «от конца к началу».














Тематическое планирование


Тема 1. История развития математики


2

Нумерация у разных народов

1

3

Как измеряли в древности. Старые русские меры.

Метрическая система мер

1

4

Математики древности

1

5

Русские математики

1


Тема 2. Цифры и числа


6

Числа – великаны и числа- карлики

1

7

Цифровые задачи

1

8

Числовые игры

1

9

Головоломки и числовые ребусы

1

10

Малая олимпиада школьников

1


Тема 3. Делимость и остатки


11

Четность

1

12

Признаки делимости

1

13

Решение задач с монетами

1

14

Рисование фигуры одним росчерком пера

1


Тема 4. Принцип Дирихле


15

Решение задач на определение худшего случая

1

16

Принцип Дирихле

1

17

Решение конкурсных и олимпиадных задач

1

18

Математический турнир

1


Тема 5. Геометрия на плоскости и в пространстве


19

Магические квадраты

1

20

Игры со спичками

1

21

Геометрия на клетчатой бумаге: разрезание фигур на равные части

1

22

Геометрия на клетчатой бумаге: рисование фигур на клетчатой бумаге

1

23

Игры с пентамино

1

24

Решение занимательных задач

1


Тема 6 . Математическая смесь


25

Решение логических задач

1

26

Решение логических задач

1

27-28

Переливания, перекладывания и взвешивания

2

29

Задачи на «движение»

1

30

Задачи на «движение»

1

31

Пересечение и объединение. Круги Эйлера

1

32

Старинные занимательные задачи

1

33

Задачи - шутки

1

34

Урок – обобщение «Математика вокруг нас»

1

35

Итоговый урок

1


















































  1. Учебно-методическое обеспечение для учителя

  2. [link]





























    Тема 2. Цифры и числа

    1)Впишите вместо звездочек цифры от 0 до 9так, чтобы получилось три верных примера на сложение:

    *+*=* * *+*=* *+*=*

    Ответ:3+7=10, 2+6=8, 4+5=9 или 4+6=10, 3+5=8, 2+7=9

    2) Из карточек сложили неверное равенство. Передвиньте одну карточку, чтобы равенство стало верным:

    101-102=1 Ответ: 101-102=1

    3) Укажите правило и продолжи ряд чисел:

    1. 1,3,5,7,…( Ответ:мнечетные числа)

    2. 1,4,7,10,…( Ответ:каждый следующий на 3 больше)

    3. 40,38,36,34,…( Ответ:четные в обратном порядке)

    4. 70,64,58,52,…( Ответ:уменьшение на 3)

    5. 11,16,21,26,…( Ответ:возрастание на 5)

    6. 2,3,6,7,10,11,…( Ответ:парами «четное-нечетное» с возрастанием на 4)

    7. 10,11,15,16,20,21,…( Ответ:парами соседних натуральных чисел, первый элемент кратен 5)

    4) Расшифруйте запись верного арифметического равенства, в котором разные цифры заменены разными буквами, одинаковые цифры - одинаковыми буквами:

    1. Чай:ай=5, Ответ: 125:25=5, 250:50=5, 375:75=5

    2. лик*лик=бублик, Ответ: 376*376=141376

    3. барбос+боблик=собаки, Ответ: 74 5718+71702=817420

    4. труд+воля=удача(дополнительное условие: числа «тр» и «во» делятся на 13) Ответ: труд=7814, воля=6509, удача=14323 или труд=6514, воля=7809, удача=14323

    5) Запишите в строчку три числа так, чтобы сумма любых двух соседних чисел была четная, а сумма всех чисел была нечетная.( Ответ: 1,3,5)

    6)Из книги выпала какая-то ее часть. Первая страница выпавшего куска имеет номер 387, а номер последней страницы состоит из тех же цифр, но записанных в другом порядке. Сколько листов выпало из книги? (Ответ:176 листов)

    Контрольная работа по теме: «Цифры и числа»

    1. Для нумерации страниц книги потребовалось всего 1392 цифры. Сколько страниц в книге? (Ответ:500)

    2. Расшифруйте запись верного арифметического равенства, в котором разные цифры заменены разными буквами, одинаковые цифры - одинаковыми буквами: один+один=много, вагон+вагон=состав

    (Ответ:6823+6823=13646, 85679+85679=171358)

    1. Укажите правило и продолжи ряд чисел:

    1. 3,13,23,33,…( Ответ:43,53)

    2. 1,1,2,3,5,…( Ответ:8,13)

    3. 11,101,1001,10001,…( Ответ:100001,1000001)

    4. 12,31,24,12,51,…( Ответ: поставить запятую после третьей цифры:26,12,71,28)

    1. Найди сумму всех натуральных чисел от 1 до 100 (Ответ:5050)

    2. В записи 1*2*3*4*5 звездочки заменить знаками действий и расставьте скобки так, чтобы получилось выражение, значение которого равно 100. (Ответ: 1*(2+3)*4*5=100)









































    Тема 3. Делимость и остатки

    1. Некто утверждает, что знает 4 натуральных числа, произведение и сумма которых нечетные числа. Не ошибается ли он? (Ответ: ошибается. Если произведение четырех натуральных чисел нечетное, то эти числа нечетные, а их сумма четная)

    2. Можно ли разменять 20 р. Семью монетами, достоинство каждой из которых 1 р. Или 5 р. (Ответ:невозможно, т.к. требуется четное число представить в виде суммы нечетного числа нечетных слагаемых)

    3. Имеется 13 палочек. Некоторые из них разломали или на 3, или на 5 частей, и так несколько раз. Можно ли после нескольких таких операций получить 100 палочек? (Ответ: невозможно, т.к. сумма четного и нечетного чисел нечетна)

    4. Можно ли не отрывая карандаша от бумаги и не проводя по линии дважды, нарисовать одним росчерком:

    а) распечатанный конверт

    б)нераспечатанный конверт

    5) К числу 15 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 15. (Ответ:3150, 6150, 9150, 1155, 4155, 7155)

    6) Докажите, что числа, запись которых состоит из трех одинаковых цифр, делятся и на 3, и на 37.

    7) Найдите все числа, при делении которых на 7 в частном получится то же число, что и в остатке. (Ответ:8,16,24,32,40,48)

    Тема 4. Принцип Дирихле

    1. В непрозрачном мешке лежат 5 белых и 2 черных шара.

    1. Какое наименьшее число шаров надо вытащить из мешка, чтобы среди них обязательно оказался хотя бы один белый шар?

    2. Сколько шаров надо вытащить, чтобы среди них обязательно оказался хотя бы один белый и хотя бы один черный?

    1. На карточках написаны двузначные числа. Сколько карточек нужно взять не глядя, чтобы по крайней мере одно из чисел делилось: а)на2, б) на 7, в) на 2 или на 7?

    2. В школе 20 классов. В ближайшем доме живет 23 ученика этой школы. Можно ли утверждать, что среди них обязательно найдутся хотя бы 2 одноклассника?

    3. Учительница объявила результаты диктанта. Больше всех ошибок было у Пети – 13. Докажите, что среди 28 учащихся, допустивших ошибки, найдутся 3 человека с одинаковым числом ошибок.

    4. Принесли 5 чемоданов и 5 ключей от этих чемоданов, но неизвестно, какой ключ от какого чемодана. Сколько проб придется сделать в самом худшем случае, чтобы подобрать к каждому чемодану свой ключ? (10 проб)





    Контрольная работа по теме: «Делимость и остатки. Принцип Дирихле»

    1. Вася вычислил произведение 14*15*16*17*18*19=1953…040, но пропустил цифру. Нужно ли снова выполнять умножение, или эту цифру можно определить проще? (Ответ: проверить, делится ли произведение на 9. Если делится, то для определения неизвестной цифры, воспользоваться признаком делимости на 9)

    2. Не отрывая карандаша от бумаги и не проводя по линии дважды, нарисуйте фигуры:



    1. При делении на 2 число дает остаток 1, а при делении на 3 – остаток 2. Какой остаток дает это число при делении на 6? (5)

    2. В погребе стоит 20 одинаковых банок с вареньем. В 8-ми банках клубничное варенье, в 7-ми – малиновое, в 5-ти – вишневое. Какое наибольшее число банок, которые можно в темноте вынести из погреба с уверенностью, что там осталось еще хотя бы 4 банки одного сорта варенья и 3 банки другого?(Ответ:7 банок)

    3. Коля подсчитал, что за день в завтрак, обед, ужин он съел 10 конфет. Докажите, что хотя бы один раз он съел не меньше четырех конфет.

































    Тема 5. Геометрия на плоскости и в пространстве

    1. Деревянный куб покрасили со всех сторон, потом распилили его на 27 одинаковых кубиков. Сколько среди них имеют одну, две, три окрашенные грани? Сколько кубиков не окрашено?

    2. На рисунке показана развертка игрального кубика. Какое число находится на:

    1. Нижней грани,

    2. Боковой грани слева,

    3. боковой грани сзади?

    1. Квадрат содержит 16 клеток. Разделите квадрат на 2 равные части так, чтобы линия разреза шла по сторонам клеток.

    2. Прямоугольник 4*9 разрежьте на две части так, чтобы из них можно было сложить квадрат.

    3. Разделите квадрат 4*4 на четыре равные части так, чтобы линия разреза шла по сторонам квадратов.

    4. Покажите, как можно разрезать треугольник на два треугольника, четырехугольник и пятиугольник, проведя две прямые линии.

    5. Переложите 2 спички так, чтобы дом повернулся другой стороной:



    1. Сколькими способами можно пройти путь изА в В, двигаясь по линиям слева направо и сверху вниз? А





    1. Не отрывая карандаша от бумаги и не обводя дважды один и тот же участок, вычертить фигуру:













    1. Придумайте паркет из равных шестиугольников, семиугольников, из равных фигур «тетрамино».

















    Контрольная работа по теме: «Геометрия на плоскости и в пространстве»

    1. Перечеркните все точки четырьмя прямыми линиями не отрывая карандаша:

    2. Из четырех кусков проволоки длиной по 9 см сложить, не разрезая их, каркас прямоугольного параллелепипеда с длинами ребер 2,3,4 см.

    3. Разделить фигуру на шесть частей, проведя две прямые.

    4. Переложите пять спичек так, чтобы получилось три квадрата.




    1. Имеется три квадрата 3*3, 6*6, 6*6. Разрежьте каждый квадрат на две части и сложите из всех шести частей квадрат.



































































    Тема 6. Математическая смесь

    Задачи «Верно ли»

    1) Всем кошкам нравится запах рыбы. Некоторые кошки слишком толстые. Некоторые слишком толстые кошки прекрасно ловят мышей. Таким образом:

    а) всем кошкам, которые прекрасно ловят мышей, нравится запах рыбы;

    б) некоторым слишком толстым кошкам не нравится запах рыбы;

    в) некоторые кошки, которые прекрасно ловят мышей, слишком толстые. Какие утверждения верные? (Ответ: а,в)

    2)Школьник сказал своему приятелю Вите Иванову: «У нас в классе 23 человека. И представь, каждый из них дружит ровно с девятью одноклассниками». «Не может этого быть», - сразу ответил Витя Иванов, победитель математической олимпиады. Почему он так решил? (Ответ: Представим, что между каждыми двумя друзьями протянута ниточка.Если каждый из 23 учеников будет держать в руке 9 концов ниточек, то всего протянутых ниточек будет 23*9=207 концов. Но общее число не может быть нечетным, т.к. у каждой ниточки 2 конца.)


    Задачи «Некоторые утверждения – ложны»


    3)Четверо ребят обсуждали ответ к задаче. Коля сказал: «Это число 9». Роман: «Это простое число». Катя: «Это четное число». А Наташа сказала, что это число 15. Назовите это число, если и девочки, и мальчики ошиблись ровно по одному разу. (Ответ:2)

    4)Один из пяти братьев испек маме пирог. Никита сказал: «Это Глеб или Игорь». Глеб: «Это сделал не я и не Дима». Игорь сказал: «Вы оба шутите». Андрей сказал: «Нет, один из них сказал правду, а другой обманул». Дима сказал: «Нет, Андрей, ты не прав». Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог? (Ответ: Игорь)


    Задачи со сказочным сюжетом


    5)Кот в сапогах поймал четырех щук и еще половину улова. Сколько щук поймал Кот в Сапогах? (Ответ:8 щук)

    6)Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без мышки - не могут Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку? (Ответ:1237 мышек)

    Логические задачи

    7)На столе лежат в ряд четыре фигуры: треугольник, круг, прямоугольник, ромб. Они окрашены в разные цвета6 красный, синий, желтый, зеленый. Известно, что красная фигура лежит между синей и зеленой; справа от желтой фигуры лежит ромб; круг лежит правее и треугольника, и ромба; треугольник лежит не с краю; синяя и желтая фигуры лежат не рядом. Определите, в каком порядке лежат фигуры и какого они цвета. (Ответ: желтый прямоугольник, зеленый ромб, красный треугольник, синий квадрат)

    8) В кругу сидят Иванов, Петров, Марков и Карпов. Их имена Андрей, Сергей, Тимофей и Алексей. Известно, что Иванов не Алексей и не Андрей, Сергей Сидит между Марковым и Тимофеем, Карпов не Сергей и не Алексей, Петров сидит между Карповым и Андреем. Назовите имя и фамилию каждого. (Ответ: Иванов Сергей, Петров Алексей, Марков Андрей, Карпов Тимофей)


    Задачи на тему «Круги Эйлера»


    9)Из 38 учеников класса 24 занимаются в хоре, 15 в лыжной секции. Сколько учащихся занимаются и в хоре, и в лыжной секции, если в классе нет ребят, не посещающих хор или секцию. (Ответ:1 чел)

    10) Из 100 туристов, отправляющихся в путешествие, немецким владеют 30 человек, английским – 28 человек, франзузским – 42 человека. Английским и немецким одновременно владеют 8 человек, английским и французским-10, немецким и франзузским -5, всеми тремя – 3. Сколько туристов не владеют ни одним языком? (Ответ:20 человек)


    Задачи на движение

    11)папа и сын плыли в лодке против течения реки. Сын уронил за борт папину шляпу. Через 20 минут папа заметил пропажу, развернул лодку и стал догонять шляпу. При этом лодка плыла с той же собственной скоростью. Через сколько минут они догонят шляпу? (Ответ: 20 мин)

    12)Велосипедист и пешеход одновременно отправились из пункта А в пункт В. Велосипедист приехал в пункт В, развернулся, поехал обратно с той же скоростью и встретил пешехода через 2 часа после начала движения. С какой скоростью сближались велосипедист и пешеход, если расстояние между пунктами А и В равно 15 км?

    13) Велосипедист и мотоциклист одновременно выехали навстречу друг другу из двух пунктов и встретились через 12 мин. За сколько минут велосипедист проехал весь путь, если мотоциклист проехал его за 15 мин? (Ответ: 60 мин)


    Переливания, перекладывания и взвешивания

    14) Имеются 2 сосуда вместимостью 3л и 5л. Как с помощью этих сосудов налить 4 л воды?

    15)У хозяйки есть рычажные весы и гиря в 100г. Как за 3 взвешивания она может отвесить 700 г крупы?

    16)Как с помощью песочных часов отмерить 15 минут, если одни отмеряют 7 минут, а другие – 1 минут?


    Задачи-шутки и старинные задачи


    17) Шел мужик в Москву и повстречал 7 богомолок. У каждой из них было по мешку, а в каждом мешке по коту. Сколько существ направлялось в Москву?

    18)Я провел год в деревне, в Москве и в дороге – и притом в Москве в 8 раз более времени, чем в дороге, а в деревне в 8 раз более, чем в Москве. Сколько дней провел я в дороге, в Москве и в деревне?


    Контрольная работа по теме: «Математическая смесь»

    1)Учащиеся 5 и 6 классов отправились на экскурсию. Мальчиков было 16, учащихся 6 класса – 24, пятиклассниц столько, сколько мальчиков из 6 класса. Сколько всего детей побывали на экскурсии? (Ответ: 40)

    2)Однажды Алиса оказалась в какой-то из двух стран – А или Я. Она знает, что все жители страны А всегда говорят правду, а все жители страны Я – всегда лгут Притом все они часто ездят друг к другу в гости. Может ли Алиса, задав один-единственный вопрос первому встречному, узнать, в какой стране она находится?(Ответ:в стране А любой ответит «да», в стране Я – «нет»)

    3)Лиза на 8 лет старше Насти. Два года назад ей было втрое больше лет, чем насте. Сколько лет Лизе? (Ответ:14)

    4) Две машины одновременно выехали навстречу друг другу из двух пунктов. Через сколько часов они встретятся, если первая машина может проехать все расстояния между пунктами за 30 часов, а вторая – за 45 часов? (Ответ6 18 ч)

    5) В футбольной секции занимается 25 человек, в хоккейной – 23 человека. Сколько человек занимается футболом и хоккеем, если всего в двух секциях занимается 45 человек. (Ответ: 3 чел.)








    Итоговая контрольная работа


    1)Какое наименьшее число детей может быть в семье, если у каждого ребенка есть хотя бы 1 сестра и хотя бы 1 брат? (Ответ: 4)

    2)Может ли число, составленное из одних четверок, делится на число, составленное из одних троек нацело? И наоборот? (Ответ: да, 444444 на 33; наоборот нет, т.к. нечетное число не делится на четное нацело)

    3)Восстанови запись: 14***:7=** (Ответ: 1431:27=53)

    4)В группе 29 студентов. Среди них 14 любителей классической музыки, 15-джаза, 14 – народной музыки. Классическую музыку и джаз слушают 6 студентов, народную музыку и джаз – 7, классику и народную – 9. Пятеро студентов слушают всякую музыку, а остальные не любят никакой музыки. Сколько их? (Ответ:3)

    5)В семье четверо детей, им 5, 8, 13 и 15 лет. Детей зовут Аня, Боря, Вера, Галя. Сколько лет каждому, если одна девочка ходит в детский сад, аня старше Бори и сумма лет Ани и Веры делится на три? (Ответ: Вере – 5, Боре -8, Ане -13, Гале-15)