«Утверждаю» Директор МОУ «СОШ № 97» _______ /Власова Л.В./ Пр. № ____ от 01.09. 2016г.
| «Согласовано» Заместитель руководителя по УВР МОУ «СОШ № 97» _____ /Сапунова Т.Ф./
31.08.2016г.
| «Рассмотрено» На заседании ШМО Протокол № ___ от 29.08.2016г. Председатель ШМО _____ / Колесникова Г.Г./
.
|
Рабочая программа уровня основного общего образования
По предмету математика.
Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ №1897 от 17 декабря 2010 года; примерной программы по математике (Стандарты второго поколения. Примерные программы по учебным предметам. Математика 5-9 классы. Москва «Просвещение» 2011).
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Рабочая программа по математике на уровень основного общего образования (5-9 классы) разработана на основании:
Закона об образования в Российской Федерации от 29.12.2012 № 273-ФЗ (ред. от 05.05.2014)
Федерального государственного образовательного стандарта основного общего образования (утвержден приказом Минобрнауки России от 17.12.2010 г. № 1897, зарегистрирован в Минюсте России 01.02.2011 г., регистрационный номер 19644);
Примерной программы по математике. Математика 5-9 классы. Москва «Просвещение», 2011 год.
Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях
Для реализации рабочей программы используются УМК:
1. Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд "Математика 5", издательство "Мнемозина", г.Москва, 2015 год;
2. Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд "Математика 6", издательство "Мнемозина", г.Москва, 2015 год;
3. А. Г. Мордкович, П. В. Семенов «Алгебра. 7 класс» в 2 частях. – М.: Мнемозина, 2015
4. .А. Г. Мордкович, П. В. Семенов «Алгебра. 8 класс» в 2 частях. – М.: Мнемозина, 2015
5. А. Г. Мордкович, П. В. Семенов «Алгебра. 9 класс» в 2 частях. – М.: Мнемозина, 2015
6. Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. «Геометрия. 7-9 классы».
Обучение математике является важнейшей составляющей основного общего образования и призвано развивать логическое мышление и математическую интуицию учащихся, обеспечить овладение учащимися умениями в решении различных практических и межпредметных задач. Математика входит в предметную область «Математика и информатика».
Основными целями курса математики 5—9 классов в соответствии с Федеральным образовательным стандартом основного общего образования являются: «осознание значения математики ... в повседневной жизни человека; формирование представлений о социальных, культурных и исторических факторах становления математической науки; формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления»
Усвоенные в курсе математики основной школы знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин в основной и старшей школе, но и для решения практических задач в повседневной жизни.
При разработке учебников авторы дополнительно ставили перед собой следующие цели: развитие личности школьника средствами математики, подготовка его к продолжению обучения и к самореализации в современном обществе.
Достижение перечисленных целей предполагает решение следующих задач:
формирование мотивации изучения математики, готовности и способности учащихся к саморазвитию, личностному самоопределению, построению индивидуальной траектории в изучении предмета;
формирование у учащихся способности к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;
формирование специфических для математики стилей мышления, необходимых для полноценного функционирования в современном обществе, в частности логического, алгоритмического и эвристического;
освоение в ходе изучения математики специфических видов деятельности, таких как построение математических моделей, выполнение инструментальных вычислений, овладение символическим языком предмета и др.;
формирование умений представлять информацию в зависимости от поставленных задач в виде таблицы, схемы, графика, диаграммы, использовать компьютерные программы, Интернет при её обработке;
овладение учащимися математическим языком и аппаратом как средством описания и исследования явлений окружающего мира;
овладение системой математических знаний, умений и навыков, необходимых для решения задач повседневной жизни, изучения смежных дисциплин и продолжения образования;
формирование научного мировоззрения;
воспитание отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса геометрии обусловлена тем, что её объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.
При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников.
Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.
Общая характеристика учебного предмета.
Выбор данной программы и учебно-методического комплекса обусловлен преемственностью целей образования, логикой внутрипредметных связей, а также возрастными особенностями развития обучающихся, и опираются на вычислительные умения и навыки обучающихся, полученные на уроках математики 1 – 4 классов: на знании учащимися основных свойств на все действия.
Рабочая программа имеет цель обновления требований к уровню подготовки обучающихся в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта - переход от суммы «предметных результатов» к «метапредметным результатам».
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.
В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций нами выделены главные содержательно-целевые направления (линии) развития обучающихся средствами предмета «Математика».
Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.
Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).
Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые обучающимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.
Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.
При организации процесса обучения в рамках данной программы предполагается применение следующих педагогических технологий обучения: личностно-ориентированная (педагогика сотрудничества), позволяющую увидеть уровень обученности каждого ученика и своевременно подкорректировать её; технология уровневой дифференциации, позволяющая ребенку выбирать уровень сложности, информационно-коммуникационная технология, обеспечивающая формирование учебно-познавательной и информационной деятельности учащихся. Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета.
Система уроков условна, но все же выделяются следующие виды:
Урок-лекция (УЛ). Предполагаются совместные усилия учителя и обучающихся для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или обучающимися, мультимедийные продукты.
Урок-практикум (УП). На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования, решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.
Урок-исследование (УИ). На уроке обучающиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.
Комбинированный урок (КУ) предполагает выполнение работ и заданий разного вида.
Урок решения задач (УРЗ). Вырабатываются у обучающихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой обучающийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.
Урок-тест (УТ). Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности обучающихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.
Урок-зачет (УЗ). Устный опрос обучающихся по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.
Урок-самостоятельная работа (УСР). Предлагаются разные виды самостоятельных работ: двухуровневая – уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5»; большой список заданий разного уровня, из которого обучающийся решает их по своему выбору. Рядом с обучающимся на таких уроках – включенный компьютер, который он использует по своему усмотрению.
Урок-контрольная работа (УКР). Проводится на двух уровнях: уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».
Описание места учебного предмета в учебном плане.
С учетом возрастных особенностей каждого класса выстроена система учебных занятий, спроектированы цели, задачи, продуманы возможные формы контроля, сформулированы ожидаемые результаты обучения.
В соответствии с этим реализуется типовая программа для общеобразовательных учреждений.
На освоение предмета отводится:
5 класс -175 часов (5 часов в неделю);
6 класс – 175 часов (5 часов в неделю);
7 класс – 175 часов (5 часов в неделю);
8 класс – 175 часов (5 часов в неделю);
9 класс – 175 часов (5 часов в неделю);
Итого:870часов
Согласно федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 850 ч из расчета 5 ч в неделю с 5 по 9 класс. Выполнение программы ориентированно на 34 недели.
На изучение математики в 5 и 6 классах отводится 340 часов (5 часов в неделю).
На изучение алгебры на ступени основного общего образования отводится 324 часа (3 часа в неделю в 7-9 классах).
На изучение геометрии на ступени основного общего образования отводится 186 часов (2 часа в неделю в 7- 9 классах)
Система оценки достижений результатов
освоения учебной дисциплины осуществляется преподавателем в процессе проведения тестирования, контрольных работ, диагностических работ, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.
Основной инструментарий для оценивания результатов
Оценка метапредметных и предметных результатов
Оценка метапредметных результатов представляет собой оценку достижения планируемых результатов освоения основной образовательной программы, представленных в разделах «Регулятивные универсальные учебные действия», «Коммуникативные универсальные учебные действия», «Познавательные универсальные учебные действия» программы формирования универсальных учебных действий, а также планируемых результатов, представленных во всех разделах междисциплинарных учебных программ. Формирование метапредметных результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.
Основной процедурой итоговой оценки достижения метапредметных результатов является результат выполнения промежуточных и итоговых контрольных работ, а так же результаты самостоятельных работ, тестов, и индивидуальных ответов.
Индивидуальный итоговый проект, который представляет собой учебный проект, выполняемый обучающимся в рамках одного или нескольких учебных предметов с целью продемонстрировать свои достижения в самостоятельном освоении содержания и методов избранных областей знаний и/или видов деятельности и способность проектировать и осуществлять целесообразную и результативную деятельность (учебно-познавательную, конструкторскую, социальную, художественно-творческую, иную).
Для каждого обучающегося разрабатываются план, программа подготовки проекта (базовый, повышенный).
Содержание учебного предмета.
Натуральные числа
Натуральный ряд. Десятичная система счисления. [Позиционные системы счисления.] Арифметические действия с натуральными числами. Свойства арифметических действий.
Понятие о степени с натуральным показателем. Квадрат и куб числа.
Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок.
Решение текстовых задач арифметическим способом.
Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. [Другие признаки делимости (например, на 4, на 25).] Простые и составные числа. Разложение натурального числа на простые множители. [Алгоритмы нахождения НОК и НОД.] Деление с остатком.
Дроби
Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей.
Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Отношение. Пропорция; основное свойство пропорции.
Проценты. Нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.
Решение текстовых задач арифметическим способом
Рациональные числа
Положительные и отрицательные числа, модуль числа.
Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.
Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.
Действительные числа
Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение [pic] , где т - целое число, п - натуральное.
Степень с целым показателем.
Квадратный корень из числа. Корень третьей степени. [Понятие о корне n-й степени из числа.] Запись корней с помощью степени с дробным показателем.
Понятие об иррациональном числе. Иррациональность числа [pic] и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. [Построение на координатной прямой точек, соответствующих иррациональным числам вида [pic] , где п - натуральное число.]
Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел. [Периодические и непериодические десятичные дроби.] Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч.
Измерения, приближения, оценки. Зависимости между величинами
Приближенное значение величины; округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.
Примеры зависимостей между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул.
Решение текстовых задач арифметическим способом.
Элементы алгебры
Использование букв для обозначения чисел, для записи свойств арифметических действий.
Буквенные выражения. Числовое значение буквенного выражения.
Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.
Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости
ГЕОМЕТРИЯ (220)
Наглядная геометрия
Наглядные представления о геометрических фигурах: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Взаимное расположение двух прямых, двух окружностей.
Многоугольник, правильный многоугольник. Четырехугольник, прямоугольник, квадрат. Виды треугольников: остроугольный, прямоугольный, тупоугольный, равнобедренный, равносторонний.
Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира. [Построения на клетчатой бумаге.]
Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины с помощью линейки.
Виды углов: острый, прямой, тупой, развернутый. Градусная мера угла. Измерение и построение углов заданной градусной меры с помощью транспортира.
Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. [Равносоставленные фигуры.]
[Разрезание и составление геометрических фигур. Построение паркетов, орнаментов, узоров.]
[Решение задач на нахождение равновеликих и равносоставленных фигур.]
Наглядные представления о пространственных фигурах (куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр). Изображение пространственных фигур. Примеры сечений. Многогранники. Примеры разверток многогранников, цилиндра и конуса. [Создание моделей пространственных фигур (из бумаги, проволоки, пластилина и др.).]
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
АЛГЕБРА (270)
Измерения, приближения, оценки
Приближенное значение величины; точность приближения. [Абсолютная и относительная погрешности приближения.] Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире.
Прикидка и оценка результатов вычислений. Способы записи значений величин, в том числе с выделением множителя - степени 10 в записи числа
Введение в алгебру
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.
Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.
Многочлены
Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. [Куб суммы и куб разности.] Формула разности квадратов. [Формулы суммы кубов и разности кубов.] Преобразование целого выражения в многочлен.
Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители.
Алгебраические дроби
Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.
Степень с целым показателем и ее свойства.
Рациональные выражения и их преобразования. Доказательство тождеств.
Квадратные корни
Понятие квадратного корня, арифметического квадратного корня. Уравнение вида х2 = а. Свойства арифметических квадратных корней: корень из произведения, частного, степени. Тождество вида [pic] Применение свойств арифметических квадратных корней к преобразованию числовых выражений и к вычислениям.
Уравнения с одной переменной
Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. [Исследование линейного уравнения.] Решение уравнений, сводящихся к линейным.
Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратные уравнения. Примеры решения уравнений третьей и четвертой степени с использованием методов разложения на множители [замены переменной].
Решение дробно-рациональных уравнений.
Решение текстовых задач алгебраическим способом
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое - второй степени. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.
График линейного уравнения с двумя переменными. Угловой коэффициент прямой; условие параллельности прямых. [Условие перпендикулярности прямых.]
Графики простейших нелинейных уравнений (парабола, гипербола, окружность).
Графическая интерпретация системы уравнений с двумя переменными.
Неравенства
Числовые неравенства и их свойства
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. [Примеры решения дробно-рациональных неравенств.] Системы неравенств с одной переменной.
Зависимости между величинами
Зависимости между величинами. Представление зависимостей между величинами в виде формул. Вычисления по формулам.
Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.
Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратно пропорциональных зависимостей.
Решение задач на пропорциональную и обратно пропорциональную зависимости.
Числовые функции
Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.
Примеры графиков зависимостей, отражающих реальные процессы.
Функции, описывающие прямую и обратно пропорциональные зависимости, их графики и свойства.
Линейная функция, ее свойства и график.
Квадратичная функция, ее график и свойства.
Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций y= [pic] .
[Параллельный перенос графиков вдоль осей координат, симметрия относительно осей координат.]
Числовые последовательности. Арифметическая и геометрическая прогрессии
Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. [Числа Фибоначчи.]
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ (45)
Описательная статистика
Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представления о выборочном исследовании.
Случайные события и вероятность
Понятие о случайном опыте и случайном событии. Элементарные события. Частота случайного события. Статистический подход к понятию вероятности. [Несовместные события. Формула сложения вероятностей.] Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.
Элементы комбинаторики
Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.
Множества. Элементы логики
Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.
Понятие о равносильности, следовании, употребление логических связок если то в том и только в том случае, и, или.
Резерв свободного учебного времени — 85 часов.
Личностные, метапредметные и предметные результаты освоения учебного предмета.
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов обучения:
5–9 классы
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия») являются следующие качества:
Средством достижения этих результатов является:
система заданий учебников;
представленная в учебниках в явном виде организация материала по принципу минимакса;
использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
планировать свою индивидуальную образовательную траекторию;
работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
в ходе представления проекта давать оценку его результатам;
самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
уметь оценить степень успешности своей индивидуальной образовательной деятельности;
давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
анализировать, сравнивать, классифицировать и обобщать факты и явления;
осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
создавать математические модели;
составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
вычитывать все уровни текстовой информации.
уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Коммуникативные УУД:
5–9-й классы
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
в дискуссии уметь выдвинуть контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.
Предметными результатами изучения предмета «Математика» являются следующие умения.
5-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание:
названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
как образуется каждая следующая счётная единица;
названия и последовательность разрядов в записи числа;
названия и последовательность первых трёх классов;
сколько разрядов содержится в каждом классе;
соотношение между разрядами;
сколько единиц каждого класса содержится в записи числа;
как устроена позиционная десятичная система счисления;
единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).
Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;
выполнять умножение и деление с 1 000;
вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
раскладывать натуральное число на простые множители;
находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;
решать простые и составные текстовые задачи;
выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;
находить вероятности простейших случайных событий;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
строить простейшие линейные, столбчатые и круговые диаграммы;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
6-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
десятичных дробях и правилах действий с ними;
отношениях и пропорциях; основном свойстве пропорции;
прямой и обратной пропорциональных зависимостях и их свойствах;
процентах;
целых и дробных отрицательных числах; рациональных числах;
правиле сравнения рациональных чисел;
правилах выполнения операций над рациональными числами; свойствах операций.
Сравнивать десятичные дроби;
выполнять операции над десятичными дробями;
преобразовывать десятичную дробь в обыкновенную и наоборот;
округлять целые числа и десятичные дроби;
находить приближённые значения величин с недостатком и избытком;
выполнять приближённые вычисления и оценку числового выражения;
делить число в данном отношении;
находить неизвестный член пропорции;
находить данное количество процентов от числа и число по известному количеству процентов от него;
находить, сколько процентов одно число составляет от другого;
увеличивать и уменьшать число на данное количество процентов;
решать текстовые задачи на отношения, пропорции и проценты;
сравнивать два рациональных числа;
выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;
решать комбинаторные задачи с помощью правила умножения;
находить вероятности простейших случайных событий;
решать простейшие задачи на осевую и центральную симметрию;
решать простейшие задачи на разрезание и составление геометрических фигур;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Алгебра 7-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
натуральных, целых, рациональных, иррациональных, действительных числах;
степени с натуральными показателями и их свойствах;
одночленах и правилах действий с ними;
многочленах и правилах действий с ними;
формулах сокращённого умножения;
тождествах; методах доказательства тождеств;
линейных уравнениях с одной неизвестной и методах их решения;
системах двух линейных уравнений с двумя неизвестными и методах их решения.
Выполнять действия с одночленами и многочленами;
узнавать в выражениях формулы сокращённого умножения и применять их;
раскладывать многочлены на множители;
выполнять тождественные преобразования целых алгебраических выражений;
доказывать простейшие тождества;
находить число сочетаний и число размещений;
решать линейные уравнения с одной неизвестной;
решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
решать текстовые задачи с помощью линейных уравнений и систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Геометрия 7-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;
определении угла, биссектрисы угла, смежных и вертикальных углов;
свойствах смежных и вертикальных углов;
определении равенства геометрических фигур; признаках равенства треугольников;
геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;
определении параллельных прямых; признаках и свойствах параллельных прямых;
аксиоме параллельности и её краткой истории;
формуле суммы углов треугольника;
определении и свойствах средней линии треугольника;
теореме Фалеса.
Применять свойства смежных и вертикальных углов при решении задач;
находить в конкретных ситуациях равные треугольники и доказывать их равенство;
устанавливать параллельность прямых и применять свойства параллельных прямых;
применять теорему о сумме углов треугольника;
использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Алгебра 8-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
алгебраической дроби; основном свойстве дроби;
правилах действий с алгебраическими дробями;
степенях с целыми показателями и их свойствах;
стандартном виде числа;
функциях [pic] , [pic] , [pic] , их свойствах и графиках;
понятии квадратного корня и арифметического квадратного корня;
свойствах арифметических квадратных корней;
функции [pic] , её свойствах и графике;
формуле для корней квадратного уравнения;
теореме Виета для приведённого и общего квадратного уравнения;
основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
методе решения дробных рациональных уравнений;
основных методах решения систем рациональных уравнений.
Сокращать алгебраические дроби;
выполнять арифметические действия с алгебраическими дробями;
использовать свойства степеней с целыми показателями при решении задач;
записывать числа в стандартном виде;
выполнять тождественные преобразования рациональных выражений;
строить графики функций [pic] , [pic] , [pic] и использовать их свойства при решении задач;
вычислять арифметические квадратные корни;
применять свойства арифметических квадратных корней при решении задач;
строить график функции [pic] и использовать его свойства при решении задач;
решать квадратные уравнения;
применять теорему Виета при решении задач;
решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
решать дробные уравнения;
решать системы рациональных уравнений;
решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Геометрия 8-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;
определении трапеции; элементах трапеции; теореме о средней линии трапеции;
определении окружности, круга и их элементов;
теореме об измерении углов, связанных с окружностью;
определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;
определении вписанной и описанной окружностей, их свойствах;
определении тригонометрические функции острого угла, основных соотношений между ними;
приёмах решения прямоугольных треугольников;
тригонометрических функциях углов от 0 до 180°;
теореме косинусов и теореме синусов;
приёмах решения произвольных треугольников;
формулах для площади треугольника, параллелограмма, трапеции;
теореме Пифагора.
Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;
решать простейшие задачи на трапецию;
находить градусную меру углов, связанных с окружностью; устанавливать их равенство;
применять свойства касательных к окружности при решении задач;
решать задачи на вписанную и описанную окружность;
выполнять основные геометрические построения с помощью циркуля и линейки;
находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;
применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;
решать прямоугольные треугольники;
сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;
применять теорему косинусов и теорему синусов при решении задач;
решать произвольные треугольники;
находить площади треугольников, параллелограммов, трапеций;
применять теорему Пифагора при решении задач;
находить простейшие геометрические вероятности;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Алгебра 9-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
свойствах числовых неравенств;
методах решения линейных неравенств;
свойствах квадратичной функции;
методах решения квадратных неравенств;
методе интервалов для решения рациональных неравенств;
методах решения систем неравенств;
свойствах и графике функции [pic] при натуральном n;
определении и свойствах корней степени n;
степенях с рациональными показателями и их свойствах;
определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
Использовать свойства числовых неравенств для преобразования неравенств;
доказывать простейшие неравенства;
решать линейные неравенства;
строить график квадратичной функции и использовать его при решении задач;
решать квадратные неравенства;
решать рациональные неравенства методом интервалов;
решать системы неравенств;
строить график функции [pic] при натуральном n и использовать его при решении задач;
находить корни степени n;
использовать свойства корней степени n при тождественных преобразованиях;
находить значения степеней с рациональными показателями;
решать основные задачи на арифметическую и геометрическую прогрессии;
находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Геометрия 9-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
признаках подобия треугольников;
теореме о пропорциональных отрезках;
свойстве биссектрисы треугольника;
пропорциональных отрезках в прямоугольном треугольнике;
пропорциональных отрезках в круге;
теореме об отношении площадей подобных многоугольников;
свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;
определении длины окружности и формуле для её вычисления;
формуле площади правильного многоугольника;
определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;
правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;
определении координат вектора и методах их нахождения;
правиле выполнений операций над векторами в координатной форме;
определении скалярного произведения векторов и формуле для его нахождения;
связи между координатами векторов и координатами точек;
векторным и координатным методах решения геометрических задач.
формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.
Применять признаки подобия треугольников при решении задач;
решать простейшие задачи на пропорциональные отрезки;
решать простейшие задачи на правильные многоугольники;
находить длину окружности, площадь круга и его частей;
выполнять операции над векторами в геометрической и координатной форме;
находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;
решать геометрические задачи векторным и координатным методом;
применять геометрические преобразования плоскости при решении геометрических задач;
находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Тематическое планирование.
Математика 5 класс
Описывать свойства натурального ряда. Правильно использовать в речи термины: цифра, число; называть классы и разряды в записи натурального числа.
Читать и записывать натуральные числа, определять однозначные и многозначные числа, сравнивать и упорядочивать их, грамматически правильно читать встречающиеся математические выражения.
Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры: точка, отрезок, прямая, луч, плоскость, многоугольник. Приводить примеры аналогов геометрических фигур в окружающем мире.
Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.
Измерять с помощью инструментов и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля.
Выражать одни единицы измерения длины через другие. Пользоваться различными шкалами. Определять координату точки на луче и отмечать точку по ее координате.
Выражать одни единицы измерения массы через другие. Решать текстовые задачи арифметическими способами. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
Записывать числа с помощью римских цифр.
Исследовать простейшие числовые закономерности, проводить числовые эксперименты.
1
Сложение и вычитание натуральных чисел
21
Выполнять сложение и вычитание натуральных чисел.
Правильно использовать в речи термины: сумма, слагаемое, разность уменьшаемое, вычитаемое, числовое выражение, значение числового выражения, уравнение, корень уравнения, периметр многоугольника.
Устанавливать взаимосвязи между компонентами и результатом при сложении и вычитании, использовать их для нахождения неизвестных компонентов действий с числовыми и буквенными выражениями.
Формулировать переместительное и сочетательное свойства сложения натуральных чисел, свойства нуля при сложении.
Формулировать свойства вычитания натуральных чисел.
Записывать свойства сложение и вычитание натуральных чисел с помощью букв, преобразовывать на их основе числовые выражения и использовать их для рационализации письменных и устных вычислений.
Грамматически правильно читать числовые и буквенные выражения, содержащие действия сложение и вычитание.
Записывать буквенные выражения, составлять буквенные выражения по условиям задач
Вычислять числовое значение буквенного выражения при заданных значениях букв.
Вычислять периметры многоугольников.
Составлять простейшие уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
2
Умножение и деление натуральных чисел
23
Выполнять умножение и деление натуральных чисел, деление с остатком, вычислять значения степеней.
Правильно использовать в речи термины: произведение, множитель, частное, делимое, делитель, степень, основание и показатель степени, квадрат и куб числа.
Устанавливать взаимосвязи между компонентами и результатом при умножении и делении, использовать их для нахождения неизвестных компонентов действий с числовыми и буквенными выражениями.
Формулировать переместительное, сочетательное и распределительное свойства умножения натуральных чисел, свойства нуля и единицы при умножении и делении
Формулировать свойства деления натуральных чисел.
Записывать свойства умножения и деления натуральных чисел с помощью букв, преобразовывать на их основе числовые и буквенные выражения и использовать их для рационализации письменных и устных вычислений, для упрощения буквенных выражений.
Грамматически правильно читать числовые и буквенные выражения, содержащие действия умножение и деление, а также степени.
Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.
Вычислять числовое значение буквенного выражения при заданных значениях букв.
Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
2
Площади и объемы
13
Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, имеющие форму прямоугольного параллелепипеда. Приводить примеры аналогов куба, прямоугольного параллелепипеда в окружающем мире.
Изображать прямоугольный параллелепипед от руки и с использованием чертежных инструментов. Изображать его на клетчатой бумаге.
Правильно использовать в речи термины: формула, площадь, объем, равные фигуры, прямоугольный параллелепипед, куб, грани, ребра и вершины прямоугольного параллелепипеда.
Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам. Грамматически правильно читать используемые формулы.
Вычислять площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.
Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.
Моделировать изучаемые геометрические объекты, используя бумагу, пластилин, проволоку и др.
Использовать знания о зависимостях между величинами скорость, время, путь при решении текстовых задач.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений.
1
Обыкновенные дроби
22
Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, имеющие форму окружности, круга. Приводить примеры аналогов окружности, круга в окружающем мире.
Изображать окружность с использованием циркуля, шаблона.
Моделировать изучаемые геометрические объекты, используя бумагу, проволоку и др.
Правильно использовать в речи термины: окружность, круг, их радиус и диаметр, дуга окружности.
Моделировать в графической, предметной форме понятия и свойства, связанные с понятием доли, обыкновенной дроби.
Правильно использовать в речи термины: доля, обыкновенная дробь, числитель и знаменатель дроби, правильная и неправильная дроби, смешанное число. Грамматически правильно читать записи дробей и выражений, содержащих обыкновенные дроби.
Выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями, преобразовывать неправильную дробь в смешанное число и смешанное число — в неправильную дробь.
Использовать свойство деления суммы на число для рационализации вычислений.
Решать текстовые задачи арифметическими способами.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений
2
Десятичные дроби. Сложение и вычитание десятичных дробей
15
Записывать и читать десятичные дроби. Представлять обыкновенные дроби в виде десятичных дробей и десятичные дроби в виде обыкновенных дробей. Находить десятичные приближения обыкновенных дробей.
Сравнивать и упорядочивать десятичные дроби. Выполнять сложение, вычитание и округление десятичных дробей. Выполнять прикидку и оценку в ходе вычислений.
Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.
Правильно использовать в речи термины: десятичная дробь, разряды десятичной дроби, разложение десятичной дроби по разрядам, приближенное значение числа с недостатком (с избытком), округление числа до заданного разряда.
Грамматически правильно читать записи выражений, содержащих десятичные дроби.
Решать текстовые задачи арифметическими способами.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
1
Умножение и деление десятичных дробей
26
Выполнять умножение и деление десятичных дробей. Выполнять прикидку и оценку в ходе вычислений.
Представлять обыкновенные дроби в виде десятичных дробей с помощью деления числителя обыкновенной дроби на ее знаменатель.
Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.
Решать задачи на дроби (в том числе задачи из реальной практики), использовать понятия среднего арифметического, средней скорости и др. при решении задач.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений
Читать и записывать числа в двоичной системе счисления.
2
Инструменты для вычислений и измерений
18
Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах.
Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их.
Решать задачи на проценты и дроби (в том числе задачи из реальной практики, используя при необходимости калькулятор).
Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера). Выполнять прикидку и оценку в ходе вычислений.
Распознавать на чертежах, рисунках, в окружающем мире разные виды углов. Приводить примеры аналогов этих геометрических фигур в окружающем мире.
Изображать углы от руки и с использованием чертежных инструментов. Изображать углы на клетчатой бумаге. Моделировать различные виды углов.
Правильно использовать в речи термины: угол, стороны угла, вершина угла, биссектриса угла; прямой угол, острый, тупой, развернутый углы; чертежный треугольник, транспортир.
Измерять с помощью инструментов и сравнивать величины углов. Строить углы заданной величины с помощью транспортира.
2
Повторение курса
16
1
Всего
170
14
Математика 6 класс
Делимость чисел 20
Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)
1
Сложение и вычитание дробей с разными знаменателями
28
Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями. Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их.
2
Умножение и деление обыкновенных дробей
39
Выполнять вычисления с обыкновенны ми дробями.
Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)
3
Отношения и пропорции
24
Приводить примеры использования отношений в практике. Решать задачи на проценты и дроби; использовать понятия отношения и про порции при решении задач.
2
Положительные и отрицательные числа
12
Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше ниже уровня моря и т. п.). Изображать точками координатной прямой положи тельные и отрицательные рациональные числа. Характеризовать множество целых чисел, множество рациональных чисел. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами
1
Сложение и вычитание положи тельных и отрицательных чисел
16
Формулировать и записывать с помощью букв свойства сложения и вычитания положительных и отрицательных чисел.
1
Умножение и деление положительных и отрицательных чисел
16
Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.
1
Решение уравнений
18
Читать и записывать буквенные выражения, состав лять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.
1
Координаты на плоскости
12
Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек. Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др. Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ. Приводить примеры случайных событий, достоверных и невозможных событий. Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера
1
Итоговое повторение
25
1
Общее количество часов
170
15
Алгебра 7 класс
Содержание учебного материала Кол-во часов
Основные виды деятельности ученика (на уровне учебных действий)
Кол-во контр. работ
Математический язык. Математическая модель
13
Выполнять элементарные знаково-символические действия, применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении. Распознавать линейные уравнения, решать линейные уравнения и уравнения, сводящиеся к ним. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления уравнения, решать составленное уравнение, интерпретировать результат.
1
Линейная функция
11
Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек. Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными; решать задачи, алгебраической моделью, которых является уравнение с двумя переменными; находить целые решения путём перебора.
Строить графики линейных уравнений с двумя переменными.
Вычислять значения линейной функции, составлять таблицы значений функции.
Строить график линейной функции, описывать её свойства на основе графических представлений.
Показывать схематически положение на координатной плоскости графиков функций вида у=кх, у=кх + Ь в зависимости от значений коэффициентов к, b.
1
Системы двух линейных уравнений с двумя переменными
13
Решать системы двух линейных уравнений с двумя переменными графически, методом подстановки, методом алгебраического сложения.
Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления системы линейных уравнений, решать составленную
систему уравнений, интерпретировать результат. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Использовать функционально-графические представления для решения и исследования систем уравнений.
1
Степень с натуральным показателем и его свойства
8
Формулировать определение степени с натуральным показателем, с нулевым показателем, формулировать, записывать в символической форме и обосновывать свойства степени с целым неотрицательным показателем; применять свойства степени для преобразования выражений и вычислений. Воспроизводить формулировки определений, конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем. Конструировать математические предложения с помощью связки если ..., то ...
Одночлены. Операции над одночленами
8
Выполнять действия с одночленами.
1
Многочлены. Арифметические операции над одночленами
15
Выполнять действия с многочленами; доказывать формулы сокращённого умножения, применять их в преобразованиях выражений и вычислениях. Применять различные формы самоконтроля при выполнении преобразований.
1
Разложение многочленов на множители
18
Выполнять разложение многочленов на множители и сокращение алгебраических дробей
1
Функция
у = х²
9
Вычислять значения функций у=х2, у=-х2, составлять таблицы значений функции; строить графики функций у=х2, у=-х2 и кусочных функций, описывать их свойства на основе графических представлений. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии.
1
Итоговое повторение. Итоговая контрольная работа
7
1
Общее количество часов
105
8
Алгебра 8 класс
Кол-во часов Основные виды деятельности ученика (на уровне учебных действий)
Кол-во контр. работ
Алгебраические дроби
21
Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями, представлять дробное выражение в виде отношения многочленов, доказывать тождества.
Формулировать определение степени с целым показателем. Вычислять значения степеней с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем, применять свойства степени для преобразования выражений и вычислений. [Выполнять преобразования рациональных выражений в соответствии с поставленной целью: выделять квадрат двучлена, целую часть дроби и пр.Применять преобразования рациональных выражений для решения задач.]Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня.
2
Функция
[pic] .
Свойства квадратного корня
18
Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами. Формулировать определение квадратного корня из неотрицательного числа Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближённые значения квадратных корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Исследовать уравнение хг = а; находить точные и приближённые корни при а > 0. Исследовать свойства квадратного корня, проводя числовые эксперименты с помощью калькулятора, компьютера. Доказывать свойства квадратных корней, применять их к преобразованию выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать действительные числа точками координатной прямой.
Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел.
Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику. Вычислять значения функций у= | х |, составлять таблицы значений функции; строить графики функций и кусочных функций, описывать их свойства на основе графических представлений. Использовать функциональную символику для записи разнообразных фактов, связанных с функциями, обогащая опт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии.
Квадратичная функция. Функция [pic]
18
Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функции. Вычислять значения функций у=кх2,у=к/ху=ах2 + Ьх + с, составлять таблицы значений функции; строить графики функций у-кх2, у = к/х, у=ах2 + Ьх + с и кусочных функций, описывать их свойства на основе графических представлений. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций вида у=кх2,у = к/х, у=ах2 + Ьх + с, в зависимости от значений коэффициентов, входящих в формулу. Использовать функционально-графические представления для решения и исследования уравнений.
2
Квадратные уравнения
21
Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня, функциональные свойства выражений. Распознавать линейные и квадратные уравнения, целые и дробные уравнения. Решать квадратные уравнения и уравнения, сводящиеся к ним; решать дробно-рациональные и простейшие иррациональные уравнения. Определять наличие корней квадратного уравнения по дискриминанту и коэффициентам. [Исследовать квадратные уравнения с буквенными коэффициентами.] Распознавать квадратный трехчлен, выяснять возможность разложения его на множители, представлять квадратный трёхчлен в виде произведения линейных множителей. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления уравнения, решать составленное уравнение, интерпретировать результат.
2
Неравенства
15
Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств в ходе решения задач. Распознавать линейные и квадратные неравенства. Решать линейные неравенства; решать квадратные неравенства, используя графические представления. Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с использованием степени 10. Использовать разные формы записи приближённых значений, делать выводы о точности приближения по их записи. Выполнять вычисления с реальными данными. Выполнять прикидку и оценку результатов вычислений.
1
Повторение. Итоговая контрольная работа
9
1
Общее количество часов
105
9
Алгебра 9 класс
Содержание учебного материала Кол-во часов
Основные виды деятельности ученика (на уровне учебных действий)
Кол-во контр. работ
Рациональные неравенства и системы неравенств
16
Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств, разность множеств. Приводить примеры несложных классификаций. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера. Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику. Распознавать линейные и квадратные неравенства. Решать линейные, квадратные и дробно-рациональные неравенства и их системы.
1
Системы уравнений
15
Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными. Строить графики уравнений с двумя переменными. (Решать линейные уравнения и несложные уравнения второй степени с двумя переменными в целых числах.][Изображать на координатной плоскости множества точек, задаваемых неравенствами с двумя переменными и их системами.Описывать алгебраически области координатной плоскости.]Решать системы двух уравнений с двумя переменными, методом подстановки, методом алгебраического сложения, методом введения новых переменных. Использовать функционально-графические представления для решения и исследования систем уравнений.
Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления системы уравнений, решать составленную систему уравнений, интерпретировать результат.
1
Числовые функции
25
Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функции. Вычислять значения степенных функций с целым показателем.
Формулировать определение корня третьей степени, находить значения кубических корней, используя при необходимости калькулятор. Вычислять значения функции у = Vx.
Составлять таблицы значений функций; строить графики степенных функций с целым показателем, кусочных функций, описывать их свойства.
Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Использовать функционально-графические представления для решения и исследования уравнений. Строить графики функций на основе преобразований известных графиков.
3
Прогрессии
14
Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием числовой последовательности. Вычислять члены последовательностей, заданных формулой л-го члена или рекуррентно. Устанавливать закономерность в построении последовательности, если выписаны первые несколько её членов. Изображать члены последовательности точками на координатной плоскости. Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической профессий, суммы первых л членов арифметической и геометрической профессий, решать задачи с использованием этих формул. Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической профессии, в геометрической прогрессии; изображать соответствующие зависимости графически. Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора).
1
Элементы комбинаторики, статистики и теории вероятности
16
Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций. Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления. Извлекать информацию из таблиц и диаграмм. Выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.
Организовывать информацию в виде таблиц, столбчатых и круговых диаграмм.
Приводить примеры числовых данных, находить среднее, размах, моду, дисперсию числовых наборов.
Приводить содержательные примеры использования средних значений и дисперсии для описания данных. Решать задачи на вычисление вероятности с применением комбинаторики. Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события, оценивать вероятность с помощью частоты, полученной опытным путём. Приводить примеры достоверных и невозможных событий. Объяснять значимость маловероятных событий в зависимости от их последствий. Решать задачи на нахождение вероятностей событий.
Приводить примеры противоположных событий. Использовать при решении задач свойство вероятностей противоположных событий
Повторение. Итоговая контрольная работа
16
1
Общее количество часов
105
8
Геометрия 7 класс
Содержание учебного материала Кол-во часов
Основные виды деятельности ученика (на уровне учебных действий)
Начальные геометрические сведения
10
Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами.
1
Треугольники
17
Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи.
1
Параллельные прямые
13
Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё;формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного; привадить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми.
1
Соотношения между сторонами и углами треугольника
20
Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольнике, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждении) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30", признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительныепостроения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи.
1
Повторение
8
Общее количество часов
70
4
Геометрия 8 класс
Кол-во часов Основные виды деятельности ученика (на уровне учебных действий)
Кол-во контр. работ
Четырехугольники
14
Объяснять, что такое многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждение о сумме углов выпуклого многоугольника; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанныеС этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрии в окружающей нас обстановке.
1
Площади фигур
14
Объяснять, как производится измерение площадей многоугольников; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора.
1
Подобные треугольники
19
Обьяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применений этого метода;объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрироватьпонятия синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основное тригонометрическое тождество и значения синуса, косинуса и тангенса для углов 30°, 45", 60°; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы.
2
Окружность
17
Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырехугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.
1
Повторение
4
Всего
70
5
Геометрия 9 класс
Кол-во часов Основные виды деятельности ученика (на уровне учебных действий)
Кол-во контр. работ
Векторы
8
Формулировать определении и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимися к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач.
Метод координат
10
Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой.
1
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов
11
Формулировать и иллюстрировать определения синуса, косинуса и тангенса углов от 0 до 180°; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников, объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов, формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение векторов при решении задач.
1
Длина окружности и площадь круга
12
Формулировать определение правильного многоугольника; формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач.
1
Движение
8
Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ.
1
Начальные сведения из стереометрии
8
Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое «-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника, выводить (с помощью принципа Кавальери) формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар.
Об аксиомах геометрии
2
Повторение
9
Всего
70
4
Описание учебно-методического и материально-технического обеспечения.
Нацеленность образования на развитие личности обучающегося, его познавательных, интеллектуальных и творческих способностей определяет место средств обучения и учебного оборудования в системе преподавания математики.
Список литературы
Для учителя:
Атанасян, Л.С.Геометрия 7-9[Текст]: учебник для общеобразовательных учреждений / Л.С.Атанасян, В.Ф. Бутузов и др. - М.: Просвещение, 2012. – 384 с.
Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.. Математика. 5 класс. [Текст]: учебник для общеобразоват. учреждений / И.И.Зубарева, А.Г. Мордкович - М.: Мнемозина, 2015. – 270 с.
Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд Математика. 6 класс. [Текст]: учебник для общеобразоват. учреждений / И.И. Зубарева, А.Г. Мордкович - М.: Мнемозина, 2015. – 270 с.
Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. Программы. Математика. 5 – 6 классы. Алгебра. 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы [Текст]: И.И. Зубарева, А.Г. Мордкович. – 3-е изд., испр. и доп. – М.: Мнемозина, 2011. – 63с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 1.7 класс [Текст]: учебник для общеобразоват. учреждений/ А.Г. Мордкович. – М.: Мнемозина, 2014 . – 222с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.9 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская, П.В.Семенов.– М.: Мнемозина, 2014 . –180с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 1.8 класс [Текст]: учебник для общеобразоват. учреждений / А.Г. Мордкович. – М.: Мнемозина, 2014 . – 214с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.8 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. – М.: Мнемозина, 2014 . –162с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.7 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович. – М.: Мнемозина, 2014 . –160с.
Попова Л.П. Математика 6 класс [Текст]: Контрольно-измерительные материалы/ Л.П. Попова. – М.: ВАКО, 2010. – 96 с.
Для обучающихся:
Атанасян, Л.С.Геометрия 7-9[Текст]: учебник для общеобразовательных учреждений / Л.С.Атанасян, В.Ф. Бутузов и др. - М.: Просвещение, 2010. – 384 с.
Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд Математика. 5 класс. [Текст]: учебник для общеобразоват. учреждений / И.И.Зубарева, А.Г. Мордкович - М.: Мнемозина, 2015. – 270 с.
Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд Математика. 6 класс. [Текст]: учебник для общеобразоват. учреждений / И.И. Зубарева, А.Г. Мордкович - М.: Мнемозина, 2015. – 270 с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 1.7 класс [Текст]: учебник для общеобразоват. учреждений/ А.Г. Мордкович. – М.: Мнемозина, 2014 . – 222с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.9 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская, П.В.Семенов.– М.: Мнемозина, 2014 . –180с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 1.8 класс [Текст]: учебник для общеобразоват. учреждений / А.Г. Мордкович. – М.: Мнемозина, 2014 . – 214с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.8 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. – М.: Мнемозина, 2014 . –162с.
Мордкович , А.Г. Алгебра (в 2-х частях). Ч. 2.7 класс [Текст]: задачник для общеобразоват. учреждений / А.Г. Мордкович. – М.: Мнемозина, 2014 . –160с.
Томилина М.Е. Математика 5-9 классы [Текст]: Справочник по математике / М.Е. Томилина. – Литера, 2014. – 240 с.
Маслова Т.Н. Математика 5-11 классы [Текст]: Справочник школьника по математике / Т.Н. Маслова, А.М. Суходский. – М.: ОНИКС, Мир и Образование, 2008. – 672 с.
Интернет ресурсы :