Рабочая программа по математике 6 класс ФГОС. Программа разработана на основе программы общеобразовательных учреждений по математике, 6 класс - М.Просвещение, 2011г.

Автор публикации:

Дата публикации:

Краткое описание: ...


РОСТОВСКАЯ ОБЛАСТЬ Г. БЕЛАЯ КАЛИТВА


МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 17








«Утверждаю»

Директор МБОУ СОШ №17

Приказ от _____________________

______________ /_______________






РАБОЧАЯ ПРОГРАММА



по математике,

основное общее образование, 6класс

Количество часов 170

Учитель Спасских Ольга Леонидовна

Программа разработана на основе программы общеобразовательных учреждений по математике, 6 класс - М.Просвещение, 2011г.







Планируемые результаты освоения учебного предмета.


Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  2. формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

  3. умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  4. первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  5. критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

  7. умения контролировать процесс и результат учебной математической деятельности;

  8. формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

    1. способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

    2. умения осуществлять контроль по образцу и вносить необходимые коррективы;

    3. способности адекватно оценивать правильность или Ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

    4. умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

    5. умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

    6. развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

    7. формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);

8)первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

  1. развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

  2. умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  3. умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  4. умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

  5. понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

  6. умения самостоятельно ставить цели, выбирать и создавать алгоритмы для рещения учебных математических проблем;

  7. способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

  1. владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

  2. умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

  3. умения пользоваться изученными математическими формулами;

  4. знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

  5. умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.


Содержание учебного предмета


1. Повторение курса математики 5 класс

Дроби. Арифметические действия дробями. Решение уравнений. Проценты. Решение задач.


2. Делимость чисел

Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.

 Основная цельзавершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.


3.Сложение и вычитание дробей с разными знаменателями

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цельвыработать прочные навыки преобразования дробей, сложения и вычитания дробей.


4. Умножение и деление обыкновенных дробей

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цельвыработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби


5. Отношения и пропорции

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цельсформировать понятия пропорции, прямой и обратной пропорциональности величин.


6. Положительные и отрицательные числа

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.

Основная цельрасширить представления учащихся о числе путем введения отрицательных чисел.

 

7. Сложение и вычитание положительных и отрицательных чисел

Сложение и вычитание положительных и отрицательных чисел.

Основная цельвыработать прочные навыки сложения и вычитания положительных и отрицательных чисел.


8. Умножение и деление положительных и отрицательных чисел

Умножение десятичных положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действийдля рационализации вычислений.

Основная цельвыработать прочные навыки арифметических действий с положительными и отрицательными числами.


9. Решение уравнений

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цельподготовить учащихся к выполнению преобразований выражений, решению уравнений.



10. Координаты на плоскости

Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков и диаграмм.

Основная цельпознакомить учащихся с прямоугольной системой координат на плоскости.


11. Повторение. Решение задач.

Систематизация, обобщение курса «Математика, 6 класс »



ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ

В результате изучения курса математики 6 класса учащиеся должны знать / понимать:

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

уметь:

  • выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями;

  • находить значение числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицычерез более мелкие и наоборот;

  • составлять и решать пропорции, решать основные задачи на дроби, проценты;

  • решать линейные уравнения с одной переменной;

  • изображать числа точками на координатной прямой;

  • решать текстовые задачи;

  • пользоваться языком математики для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры, выполнять чертежи по условию задач;

  • построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;

  • находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;

  • интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы;

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для решения несложных практических задач, в том числе с использованием справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результатов вычислений; проверки результатов вычислений с использованием различных приемов;

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин;

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);

  • решения практических задач в повседневной деятельности с использованием действий с числами, процентов, длин, площадей, объемов.


Критерии и нормы оценки знаний, умений и навыков обучающихся по математике


- Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

- Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.

- Среди погрешностей выделяются ошибки и недочеты.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.

- Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

- Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.

- Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.

- Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.


Оценка устных ответов учащихся.


Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.

  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).

  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. ……………………………………………………………

Оценка «1» ставится в случае, если:

  • ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.


Оценка письменных контрольных работ учащихся.

Отметка «5» ставится в следующих случаях:

  • работа выполнена полностью.

  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.









Тематическое планирование


Глава

Количество часов

Контрольная работа

1

Повторение изученного в 5 классе

4

Диагностическая контрольная работа

2

Делимость чисел

20

№ 1

3

Сложение и вычитание дробей с разными знаменателями

28

№ 2,3

4

Умножение и деление обыкновенных дробей

31

№ 4,5,6

5

Отношения и пропорции

18

№ 7, 8

6

Положительные и отрицательные числа

13

№ 9

7

Сложение и вычитание положительных и отрицательных чисел

11

№ 10

8

Умножение и деление положительных и отрицательных чисел

12

№ 11

9

Решение уравнений

13

№ 12, 13

10

Координаты на плоскости

13

№ 14

11

Итоговое повторение курса математики 6 класса

12

Итоговая контрольная работа


Всего

170




Протокол заседания

методического консилиума

МБОУ СОШ №17

от 26 августа 2016 года №1

________ / Е.А. Перлова/


СОГЛАСОВАНО Заместитель директора по УВР __________/С.В. Елисеева/

26 августа 2016 года


11