Олимпиада по математике. 9 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Олимпиада по математике. 9 класс


Задача 1.

Покупатель взял у продавца товара на 10 рублей и дал 25 рублей. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушел, сосед обнаружил, что 25 рублей фальшивые. Продавец вернул соседу 25 рублей и задумался. Какой убыток понес продавец?


Ответ: 25 рублей.

Решение: Одолженные и возвращенные соседу деньги можно не принимать во внимание. Так как покупатель расплатился фальшивыми деньгами, то продавец понес убыток 25 рублей.


Задача 2.

В треугольнике АВС угол А равен 60°, а угол В равен 82°. АD, ВЕ и СF- высоты, пересекающиеся в точке О. Найдите угол АОF.


Ответ:82°.

Решение: одно из возможных обоснований:

1) Рассмотрим треугольник АВD: угол АDВ равен 90°,т.к. АD- высота треугольника АВС, тогда угол ВАD=90°-82°=8°.

2) Рассмотрим треугольник АFО: угол АFО равен 90°,т.к. СF- высота треугольника АВС, тогда угол АОF=90°-8°=82°.


Задача 3.

Имеются два сосуда, в первом из них 1 л воды, второй сосуд пустой. Последовательно проводятся переливания из первого сосуда во второй, из второго в первый и т. д., причем доля отливаемой воды составляет последовательно 1/2, 1/3, 1/4 и т. д. от количества воды в сосуде, из которого вода отливается. Сколько воды будет в сосудах после 2007 переливаний?


Решение: «Просчитав» несколько первых переливаний, нетрудно обнаружить, что после первого, третьего, пятого переливаний в обоих сосудах будет по ½ л воды. Необходимо доказать, что так будет после любого переливания с нечетным номером. Если после переливания с нечетным номером 2k-1 в сосудах было по ½ л, то при следующем переливании из второго сосуда берется 1/(2k + 1) часть, так что в первом сосуде оказывается - 1/2 + (2/ 2(2k + 1)) = (k + 1)/(2k + 1) (л). При следующем переливании, имеющем номер 2k+1, из него берется 1/(2k + 2) часть и остается (k + 1)/(2k + 1)-(k + 1)/((2k + 1)(2k + 1)) = 1/2 (л). Поэтому после седьмого, девятого и вообще любого нечетного переливания в сосудах будет по ½ л воды.

Задача 4.

Каждый юноша в 9 классе играет либо в футбол, либо в хоккей. При этом треть футболистов еще и хоккеисты, а среди хоккеистов футболом увлекается каждый четвертый. Кого среди юношей этого класса больше: увлеченных футболом или увлеченных хоккеем?


Ответ: Хоккеистов.

Решение: Пусть одновременно футболом и хоккеем в классе увлекаются к человек. Тогда футболистов в классе 3к, а хоккеистов -4к. При этом кǂ0, так как футболисты и хоккеисты в классе заведомо есть.

Задача 5.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.


Ответ: 0,375.

Решение:

Какие возможны исходы трех бросаний монеты?
1) Решка, решка, решка.
2) Решка, решка, орел.
3) Решка, орел, решка.
4) Орел, решка, решка.
5) Решка, орел, орел.
6) Орел, решка, орел.
7) Орел, орел, решка.
8) Орел, орел, орел.
Это все возможные события, других нет. Нас интересует вероятность 5-го, 6-го или 7-го события.
Всего возможных исходов - 8.
Благоприятных иcходов - 3.
Отношение 3/8 = 0,375.

Задача 6.

Докажите, что в любой компании найдутся два человека, имеющие равное число знакомых в этой компании (если A знаком с B, то и B знаком с A).

Решение.

Пусть в компании k человек. Тогда каждый человек может иметь от нуля до (k – 1) знакомых. Предположим противное: количество знакомых у всех разное. Тогда найдется человек без знакомых, найдется человек с одним знакомым, и так далее, наконец, найдется человек, у которого (k – 1) знакомых. Но тогда этот последний знаком со всеми, в том числе и с первым. Но тогда у первого не может быть ноль знакомых. Получили противоречие.

Задача 7.

Сколько существует треугольников со сторонами 5 см и 6 см, один из углов которого равен 20.

Решение:

Есть только один треугольник, в котором угол 20 град. лежит между сторонами 5 см и 6 см. Попробуем построить треугольник, в котором сторона 6 см прилегает к углу 20 град. , а сторона 5 см лежит против него. Для этого от вершины угла отложим отрезок длиной 6 см, и проведем окружность радиуса 5 см с центром этого отрезка, не совпадающем с вершиной. Расстояние от центра этой окружность до второй стороны угла меньше 5 см (это расстояние равно катету угла в 20 град.). Отсюда следует, что окружность пересечет прямую, содержащую вторую сторону угла, в двух точках, причем из-за того что радиус меньше 6 см, обе эти точки будут лежать на стороне угла, и мы получим два разных треугольника. Если же попробовать поменять ролями отрезки в 5 см и 6 см, то вершина угла окажется внутри построенной окружности, и мы получим только одну точку пересечения, а следовательно, и один треугольник. Итак, мы получили всего 4 треугольника.

Задача 8.

На столе лежат 2005 монет. Двое играют в следующую игру: ходят по очереди; за ход первый может взять со стола любое нечетное число монет от 1 до 99, второй любое четное число монет от 2 до 100. Проигрывает тот, кто не сможет сделать ход. Кто выиграет при правильной игре?

Решение: Опишем стратегию первого игрока.

Первым ходом он должен взять со стола 85 монет. Каждым следующим, если второй игрок берет х монет, то первый игрок должен взять 101 х монет (он всегда может это сделать, потому что если х четное число от 2 до 100, то (101 х ) нечетное число от 1 до 99).Так как 2005=101 19 + 85 + 1, то через 19 таких ответов после хода первого на столе останется 1 монета, и второй не сможет сделать ход, т. е. проиграет.