Муниципальное бюджетное общеобразовательное учреждение
«Первомайская общеобразовательная школа» Кировского района
Республики Крым
РАБОЧАЯ ПРОГРАММА
на 2016 -2017 учебный год
Преподаватель __Н.Н. Майорова____
Предмет геометрия Класс 9-Б
Общее количество часов по предмету по учебному плану 68 часов
Из них: на I полугодие 15 недель 30 уроков
на II полугодие 19 недель 38 уроков
Итого: 34 недели 68 уроков
В том числе: на контрольные работы - 5 уроков
Учебник: Л.С. Атанасян и др. Геометрия, 7-9 классы – М.: Просвещение,2014
Календарно-тематический план составлен в соответствии с учебным планом школы, утвержденным решением педсовета от « 30 » августа 2016 г. и программой: «Программа для общеобразовательных учреждений Министерство образования РФ. Геометрия 7-9 классы», Издательство Москва «Просвещение», 2014 год. Составитель программ: Т. А. Бурмистрова.
Пояснительная записка
Рабочая программа по геометрии для основной общеобразовательной школы 9 класса составлена на основе федерального компонента государственного образовательного стандарта основного общего образования по математике, «Обязательного минимума содержания основного общего образования по математике» и программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина составитель Т.А. Бурмистрова – М: «Просвещение», 2014. – с. 19-43).
Нормативное обеспечение программы:
1.Закон об образовании РФ.
2.Федеральный компонент государственного стандарта общего образования. Стандарт основного общего образования по математике.
3. Учебный план МБОУ «Первомайская ОШ» на 2016-2017 уч. г.
4. Программы общеобразовательных учреждений. Геометрия. 7-9 классы. Составитель Бурмистрова Т. А. – М.: Просвещение, 2014.
Основные цели курса:
-овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;
-приобретение опыта планирования и осуществления алгоритмической деятельности;
-освоение навыков и умений проведения доказательств, обоснования выбора решений;
-приобретение умений ясного и точного изложения мыслей;
-развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;
-научить пользоваться геометрическим языком для описания предметов.
Задачи обучения:
- научить учащихся выполнять действия над векторами как направленными отрезками;
-познакомить с использованием векторов и метода координат при решении геометрических задач;
- развить умение учащихся применять тригонометрический аппарат при решении геометрических задач;
- расширить знания учащихся о многоугольниках;
- рассмотреть понятия длины окружности и площади круга для их вычисления;
- познакомить учащихся с понятием движения и его свойствами;
- дать начальное представление о телах и поверхностях в пространстве.
Место предмета в базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии отводится 2 часа в неделю, всего 68 часов в год, в том числе на проведение 7 контрольных работ.
На итоговое повторение в 9 классе по геометрии в конце года 8 часов.
В рабочую программу внесены изменения:
В начале учебного года данной Рабочей программой предусмотрено повторение материала 8 класса в обьёме 3 часа за за счёт уменьшения количества часов на раздел «Повторение. Решение задач».
Планируемые результаты изучения курса геометрии
В результате изучения курса геометрии 9-го класса учащиеся должны уметь:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве.
В результате изучения курса учащиеся должны овладеть определенными знаниями и умениями по темам:
Главы 9, 10. Векторы. Метод координат.
В результате изучения данной главы учащиеся должны:
знать: определение вектора, различать его начало и конец, виды векторов, определять суммы и разности векторов, произведение вектора на число, что такое координаты вектора; определение средней линией трапеции;
уметь: изображать и обозначать вектор, откладывать вектор, равный данному, находить координаты вектора по его координатам начала и конца, вычислять сумму и разность двух векторов по их координатам, строить сумму двух векторов, пользуясь правилами треугольника, параллелограмма, многоугольника; строить окружности и прямые заданные уравнениями.
Глава 11. Соотношения между сторонами и углами треугольника.
В результате изучения данной главы учащиеся должны:
знать: определения косинуса синуса, тангенса для острого угла формулы, выражающие их связь; определения скалярного произведения векторов;
уметь: воспроизводить доказательства теорем косинусов и синусов, применять в решении задач; находить скалярное произведение векторов в координатах, угол между векторами.
Глава 12. Длина окружности и площадь круга.
В результате изучения данной главы учащиеся должны:
знать: определение правильного многоугольника, формулу длины окружности и ее дуги, площади сектора;
уметь: вычислять стороны, площади и периметры правильных многоугольников, длину окружности и длину дуги; применять формулы площади круга, сектора при решении задач.
Глава 13. Движения.
В результате изучения данной главы учащиеся должны:
знать: определения преобразования плоскости, движения плоскости, определять их виды;
уметь: решать задачи, используя определения видов движения.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин - длин, площадей основных геометрических фигур (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Личностные и предметные результаты
освоения учебного предмета
Личностным результатом обучения математике в основной школе является формирование всесторонне образованной, инициативной и успешной личности, обладающей системой современных мировоззренческих взглядов, ценностных ориентаций, идейно-нравственных, культурных и этических принципов и норм поведения.
личностные результаты обучения:
формирование ответственного отношения к учению,готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию,формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками в различных других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициатива, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
Предметными результатами освоения программы по геометрии являются:
пользоваться языком геометрии для описания предметов окружающегомира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры;
выполнять чертежи по условию задач;
осуществлять преобразования фигур;
вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;
проводит доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
Применять полученные знания при:
описании реальных ситуаций на языке геометрии;
расчетах, включающих простейшие формулы;
решении практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построении геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Планируемые результаты изучения курса геометрии
в 7-9 классах
Наглядная геометрия
Выпускник научится:
Распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
Распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра, конуса;
Определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;
Вычислять объем прямоугольного параллелепипеда;
Выпускник получит возможность:
Вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
Углубить и развить представления о пространственных геометрических фигурах;
Применять понятие развертки для выполнения практических расчетов.
Геометрические фигуры
Выпускник научится:
Пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
Распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
Находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 1800, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрия, поворот, параллельный перенос);
Оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
Решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
Решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
Овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
Овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
Научиться решать задачи на построение методом геометрического места точек и методом подобия;
Приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
Приобрести опыт выполнения проектов «на построение».
Измерение геометрических величин
Выпускник научится:
Использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
Вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
Вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов, секторов;
Вычислять длину окружности, длину дуги окружности;
Решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
Решать практические задачи, связанные с нахождением геометрических величин ( используя при необходимости справочники и технические средства).
Выпускник получит возможность:
Вычислять площади фигур, составленных из двух и более прямоугольников, параллелограммов, треугольников, круга и сектора;
Вычислять площади многоугольников, используя отношение равновеликости и равносоставленности;
Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
Вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
Использовать координатный метод для изучения свойств прямых и окружностей;
Выпускник получит возможность:
Овладеть координатным методом решения задач на вычисление и доказательство;
Приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
Приобрести опыт выполнения проектов на применение координатного метода при решении задач на вычисление и доказательство.
Векторы
Выпускник научится:
Оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
Находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный переместительный и распределительный законы;
Вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
Овладеть векторным методом для решения задач на вычисление и доказательство;
Приобрести опыт выполнения проектов на применение векторного метода при решении задач на вычисление и доказательство.
Содержание учебного предмета
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.
Содержание курса геометрии 9 класса включает следующие тематические блоки:
п/п Наименование разделов и тем
Всего часов
Контрольные работы
-
Вводное повторение
3
1
-
Векторы
7
1
-
Метод координат
10
1
-
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов
11
1
-
Длина окружности и площадь круга
12
1
-
Движения
8
1
-
Начальные сведения из стереометрии
7
-
-
Об аксиомах планиметрии
2
-
-
Повторение. Решение задач
8
1
Итого:
68
7
Характеристика основных содержательных линий
1-3. Повторение, векторы и метод координат
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
4. Соотношения между сторонами и углами треугольника.
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
5. Длина окружности и площадь круга
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
6.Движения
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
7. Начальные сведения из стереометрии
Предмет стереометрия. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объёмов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объёмов.
Основная цель – дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объёмов тел.
Рассмотрение простейших многогранников (призма, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объёмов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью развёрток этих поверхностей, формула площади сферы приводится без обоснования.
8. Об аксиомах геометрии
Беседа об аксиомах геометрии.
Основная цель – дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
Различные системы аксиом, различные способы введения понятия равенства фигур.
9. Повторение. Решение задач
ФОРМЫ И СРЕДСТВА КОНТРОЛЯ
фронтальная, индивидуальная, парная и групповая формы;
тест, самостоятельная и контрольные работы, математический диктант, устный опрос, зачёт. На основании результатов промежуточной аттестации выставляются оценки. Освоение образовательных программ основного общего образования завершается обязательной итоговой аттестацией выпускников.
Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.
Для проведения контрольных срезов используются следующие пособия:
Программа общеобразовательных учреждений по геометрии 7–9 классы (авторы Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина составитель Т.А. Бурмистрова – М: «Просвещение», 2014. – с. 19-43).
Б.Г. Зив, В.М. Мейлер, Дидактические материалы по геометрии для 9 класса. –М.; Просвещение, 2005г
3. Тематический контроль по геометрии. 9 класс/ Мельникова Н.Б., Лепихова Н.М. – М. : Интелкт-Центр.2006г-64 с.
4. демоверсии ГИА по математике.
КАЛЕНДАРНО – Т ЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Учебник: Атанасян Л.С. и др. Геометрия. Учебник для 7-9 классов.
М., «Просвещение», 2014. Количество часов в неделю: 2
Наименование темы
Коли-чество часов
Дата
план факт
Повторение
3
1
Четырехугольники,треугольники
1
07.09
2
Площади фигур
1
08.09
3
Диагностическая работа (к.р. № 1)
1
14.09
Векторы
7
4
Понятие вектора. Равенство векторов
1
15.09
5
Откладывание вектора от данной точки
1
21.09
6
Сумма двух векторов. Законы сложения векторов
1
22.09
7
Сумма нескольких векторов. Вычитание векторов
1
28.09
8
Произведение вектора на число. Применение векторов к решению задач
1
29.09
9
Средняя линия трапеции
1
05.10
10
Контрольная работа №2 «Векторы»
1
06.10
Метод координат
10
11
Разложение вектора по двум неколлинеарным векторам
1
12.10
12
Координаты вектора. Связь между координатами вектора и координатами его начала и конца
1
13.10
13
Простейшие задачи в координатах
1
19.10
14
Уравнение линии на плоскости.Уравнение окружности.
1
20.10
15
Решение задач
1
26.10
16
Уравнение прямой
1
27.10
17
Взаимное расположение двух окружностей
1
09.11
18
Решение задач методом координат
1
10.11
19
Решение задач методом координат
1
16.11
20
Контрольная работа № 3 по теме «Метод координат»
1
17.11
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов
11
21
Синус, косинус тангенс угла
1
23.11
22
Основное тригонометрическое тождество. Формулы приведения
1
24.11
23
Формулы для вычисления координат точки
1
30.11
24
Теорема о площади треугольника, теорема синусов
1
01.12
25
Теорема косинусов
1
07.12
26
Решение треугольников
1
08.12
27
Решение треугольников. Измерительные работы
1
14.12
28
Угол между векторами. Скалярное произведение векторов. Скалярное произведение в координатах
1
15.12
29
Свойства скалярного произведения
1
21.12
30
Решение задач
1
22.12
31
Контрольная работа № 4 по теме «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»
1
11.01
Длина окружности и площадь круга
12
32
Вписанные и описанные окружности правильного многоугольника
1
12.01
33
Формулы для вычисления площади мн-ка, его стороны и радиуса вписанной окр-ти
1
18.01
34
Решение задач
1
19.01
35
Построение правильных многоугольников
1
25.01
36
Длина окружности
1
26.01
37
Длина окружности
1
01.02
38
Площадь круга. Площадь кругового сектора
1
02.02
39
Площадь круга. Площадь кругового сектора
1
08.02
40
Решение задач
1
09.02
41
Решение задач
1
15.02
42
Решение задач
1
16.02
43
Контрольная работа № 5 по теме «Длина окружности и площадь круга»
1
22.02
Движение
8
44
Отображение плоскости на себя. Понятие движения
1
01.03
45
Решение задач
1
02.03
46
Параллельный перенос
1
09.03
47
Решение задач
1
15.03
48
Поворот
1
16.03
49
Решение задач
1
22.03
50
Решение задач
1
23.03
51
Контрольная работа № 6 по теме «Движения»
1
05.04
Начальные сведения из стереометрии
7
52
Анализ контрольной работы. Предмет стереометрии. Многогранник. Призма. Параллелепипед.
1
06.04
53
Объем тела
1
12.04
54
Свойства прямоугольного параллелепипеда.
1
13.04
55
Пирамида.
1
19.04
56
Цилиндр. Конус
1
20.04
57
Решение задач
1
26.04
58
Сфера и шар
1
27.04
Об аксиомах планиметрии
2
59
Об аксиомах планиметрии
1
03.05
60
Об аксиомах планиметрии
1
04.05
Повторение
8
61
Повторение. Метод координат
1
10.05
62
Повторение.Скалярное произведение векторов
1
11.05
63
Повторение. Решение треугольников
1
17.05
64
Повторение. Решение треугольников
1
[link] - портал информационной поддержки мониторинга качества образования, здесь можно найти Федеральный банк тестовых заданий.
Лист корректировки
рабочей программы ( тематического планирования)
по геометрии в 9 классе
п/п
Название раздела, темы
Дата проведения по плану
Причина корректировки
Корректирующие мероприятия
Дата проведения по факту
Приложение к рабочей программе по геометрии 9 класс:
Контрольные работы
Контрольная работа № 1 Метод координат
Вариант 1
1.Найдите координаты и длину вектора если
2. Даны координаты вершин треугольника ABC: A (-6; 1), B (2; 4), С (2; -2).
Докажите, что треугольник ABC равнобедренный, и найдите высоту треугольника, проведенную из вершины A.
3. Окружность задана уравнением Напишите уравнение прямой, проходящей через её центр и параллельной оси ординат.
Вариант 2
1.Найдите координаты и длину вектора если
2. Даны координаты вершин четырехугольника ABC D: A (-6; 1), B (0; 5), С (6; -4),D (0; -8).
Докажите, что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей.
3. Окружность задана уравнением Напишите уравнение прямой, проходящей через её центр и параллельной оси абсцисс.
Контрольная работа № 2
Соотношения между сторонами и углами треугольника.
Скалярное произведение векторов.
Вариант 1
1. Найдите угол между лучом ОА и положительной полуосью Ох, если А(-1; 3).
2. Решите треугольник АВС, если
3. Найдите косинус угла М треугольника KLM, если К(1; 7), L(-2; 4), М(2; 0).
Вариант 2
1. Найдите угол между лучом ОВ и положительной полуосью Ох, если В(3; 3).
2. Решите треугольник ВСD, если
3. Найдите косинус угла А треугольника АВC, если А(3; 9), В(0;6), С(4;2).
Контрольная работа №3 Длина окружности и площадь круга
Вариант 1
1. Периметр правильного треугольника, вписанного в окружность, равен 45 см. Найдите сторону правильного восьмиугольника, вписанного в ту же окружность.
2. Найдите площадь круга, если площадь вписанного в ограничивающую его окружность квадрата равна 72 дм2.
3. найдите длину дуги окружности радиуса 3 см, если её градусная мера равна 150о.
Вариант 2
1. Периметр правильного шестиугольника, вписанного в окружность, равен 48 см. Найдите сторону квадрата, вписанного в ту же окружность.
2. Найдите длину окружности, если площадь вписанного в неё правильного шестиугольника равна .
3. Найдите площадь кругового сектора, если градусная мера его дуги равна 120о, а радиус круга равен 12 см.
Контрольная работа №4 Движения
Вариант 1
1. Дана трапеция АВСD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно прямой, содержащей боковую сторону АВ.
2. Две окружности с центрами О1 и О2, радиусы которых равны, пересекаются в точках M и N. Через точку М проведена прямая, параллельная О1О2 и пересекающая окружность с центром О2 в точке D. Используя параллельный перенос, докажите, четырехугольник О1МDО2 является параллелограммом.
Вариант 2
1. Дана трапеция АВСD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно точки, Являющейся серединой боковой стороны CD..
2. Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2 и А4А5, А2А3 и А5А6, А3А4 и А6А1 попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке.