Рабочая программа по алгебре 9 класс, 3 часа

Автор публикации:

Дата публикации:

Краткое описание: ...




Муниципальное образовательное учреждение

Новоилимская общеобразовательная школа имени Н.И. Черных


«Рассмотрено»

Руководитель МО

МОУ «Новоилимская СОШ

имени Н.И. Черных»

 ___________

С.Н. Сенюшкина

Протокол №1 от.________

«Согласовано»

Заместитель директора

по УВР

_____________

 О.М. Сафарова

___________2016 г._

«Утверждено»

Директор

МОУ «Новоилимская СОШ

имени Н.И. Черных»

 ___________

Н.А.Погодаева

_______2016 г.





Рабочая программа

по алгебре

для 9 класса

уровень: общеобразовательный

Учитель Сенюшкина Светлана Николаевна

Соответствие занимаемой должности





 















2016/2017 учебный год


Рабочая программа составлена основе следующих нормативно – правовых документов:


  1. Федеральный компонент государственного стандарта (основного общего образования) по математике, утвержден приказом Минообразования России от 05.03.2004 г. № 1089

  2. Федеральный государственный стандарт основного общего образования, утвержден приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897.

  3. Закон Российской Федерации «Об образовании» (статья 7).

  4. Региональный учебный план для образовательных учреждений Иркутской области, реализующих программы начального общего, основного общего и среднего (полного) общего образования (далее РУП) на 2011-2012, 2012-2013, учебные годы от 12.08.2011г. № 920-мр;

  5. Учебный план ОУ «Новоилимская средняя общеобразовательная школа имени Н.И. Черных» на 2016-2017 учебный год;

  6. Программы для общеобразовательных школ, гимназий, лицеев: Математика 5-11 кл./ Сост. Г.М. Кузнецова, Н.Г. Миндюк; 4-е изд. – 2004 г.

  7. Письмо службы по контролю и надзору в сфере образования Иркутской области от 15.04.2011 № 75-37-0541/11.



























Пояснительная записка.

Общая характеристика учебного предмета.

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 9 класса вырабатывается умение раскладывать квадратный трехчлен на множители; умение строить график функции у = ах2 + bх + с, умение указывать координаты вершины параболы, оси симметрии, направление ветвей; умение находить по графику промежутки возрастания и убывания функции, промежутки, в которых функция сохраняет знак; умение решать неравенства вида ах2 + bх + с>0 или ах2 + bх + с<0, где а [pic] 0; умение решать целые и дробно рациональные уравнения с одной переменной; умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; вырабатывается умение использовать индексное обозначение, которое используется при изучении арифметической и геометрической прогрессии; умение использовать комбинаторное правила умножения, которое используется при выводе формул для подсчета числа перестановок, размещений и сочетаний, умение определять, о каком виде комбинаций идет речь в задаче.




Цель изучения курса:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.


Задачи курса:

-ввести понятия квадратного трехчлена, корня квадратного трехчлена, изучить формулу разложения квадратного трехчлена на множители;

- расширить сведения о свойствах функций, познакомить со свойствами и графиком квадратичной функции и степенной функции;

- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной ;

- научить решать квадратичные неравенства;

- завершается изучение систем уравнений с двумя переменными;

- вводится понятие неравенства с двумя переменными и системы неравенств с двумя переменными;

- вводится понятие последовательности, изучается арифметическая и геометрическая прогрессии;

- ввести элементы комбинаторики и теории вероятностей.


Место предмета в учебном плане

Согласно Федеральному базисному учебному плану на изучение математики в 9 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее: 3 часа в неделю алгебры, итого 102 часа; 2 часа в неделю геометрии, итого 68 часов.

Используемые технологии, методы и формы работы.

При реализации данной программы используются элементы следующих технологий: личностно ориентированное обучение, дифференцированное обучение.

Методы обучения

    1. Классификация по источнику знаний:

      • Словесные

      • Наглядные

      • Практические

    2. Классификация по характеру УПД

      • Объяснительно-иллюстративный

      • Проблемное изложение знаний

      • Частично-поисковый (эвристический)

      • Исследовательский

      • Репродуктивный

    3. Классификация по логике

      • Индуктивный

      • Дедуктивный

      • Аналогии

Для продуктивной работы по данной программе следует сочетать многообразие методов обучения.

Формы работы

К наиболее приемлемым формам организации учебных занятий по математике можно отнести:

Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи.

Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, практическое применение различных методов решения задач. Комбинированный урок предполагает выполнение работ и заданий разного вида.

Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.

Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке.

Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования.

Урок - самостоятельная работа.  Предлагаются разные виды самостоятельных работ.

Урок - контрольная работа. Контроль знаний по пройденной теме



Требования к уровню подготовки обучающихся в 9 классе.

В ходе преподавания алгебры в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


В результате изучения курса алгебры обучающиеся должны:

знать/понимать [link] Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.