СОДЕРЖАНИЕ
Пояснительная записка……………………………………………………..2
Общая характеристика курса математики..……………………………….3
Место учебного предмета в Базисном учебном ( образовательном)
плане………………………………………………………………………....5
Результаты изучения учебного предмета……………………………….. ..6
Планируемые результаты изучения учебного предмета, курса……….....8
Содержание основного общего образования по учебному предмету… .13
Арифметика………………………………………………………. .13
Алгебра…………………………………………………………… .13
Функции………………………………………………………….... 14
Вероятность и логика…………………………………………….. .14
Геометрия…………………………………………………………...15
Логика и множества………………………………………………. 16
Математика в историческом развитии……………………………16
Оценка планируемых результатов………………………………………. 17
обучения по математике…………………………………….……..20
обучающихся по математике
Пояснительная записка
Настоящая программа по математике для 5-9 класса разработана на основании Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Минобрнауки России от 17.12.2010 г. № 1897 (редакция от 29.12.2014 г.), Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 08.04.2015 г. № 1/15), Основной образовательной программы основного общего образования МБОУ СОШ № 46 (с изменениями и дополнениями), утвержденной приказом директора от 31.08.2015 г. № 61-о.
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:
I В направлении личностного развития:
формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
II В метапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
III В предметном направлении:
• овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Задачи:
овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.
Общая характеристика курса математики
Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.
Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.
Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
Место учебного предмета в Базисном учебном
(образовательном) плане
Базисный учебный (образовательный) план на изучение математики в основной школе отводит
5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков.
Согласно Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)
Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.
Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.
В рамках учебного раздела «Геометрия» традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования
Распределение учебного времени между этими предметами представлено
в таблице:
Классы
Предметы
Математического цикла
Количество часов
5-6
Математика
350
7-9
Алгебра
315
Геометрия
210
Всего
875
Результаты изучения учебного предмета
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
I В личностном направлении:
• умение ясно, точно, грамотно излагать свои мысли в устной и письменной
речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить
примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
I I В метапредметном направлении:
первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Ш В предметном направлении:
овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
умение проводить классификации, логические обоснования, доказательства математических утверждений;
умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;
овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Планируемые результаты изучения учебного предмета, курса
Натуральные числа. Дроби. Рациональные числа
Выпускник научится:
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
• использовать начальные представления о множестве действительных чисел;
• оперировать понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Выпускник научится:
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
• выполнять разложение многочленов на множители.
Выпускник получит возможность научиться:
• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения
Выпускник научится:
• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
Выпускник научится:
• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
• применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
Выпускник научится:
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
Выпускник научится:
• понимать и использовать язык последовательностей (термины, символические обозначения);
• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
Выпускник научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• строить развёртки куба и прямоугольного параллелепипеда;
• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
Содержание основного общего образования по учебному предмету
Содержание курса математики в 5–6 классах
Натуральные числа и нуль Натуральный ряд чисел и его свойства
Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел
Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел
Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0
Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами
Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов
сложения и вычитания. Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия. Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем
Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения
Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком
Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Свойства и признаки делимости
Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9,
10. Признаки делимости на 4,6,8,11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители
Простые и составные числа, решето Эратосфена. Разложение натурального числа на множители, разложение на простые множители.
Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения
Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные
Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби Обыкновенные дроби
Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).
Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот. Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей. Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей. Арифметические действия со смешанными дробями. Арифметические действия с дробными числами.
Способы рационализации вычислений и их применение при выполнении действий.
Десятичные дроби
Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей.
Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби.Конечные и бесконечные десятичные дроби.
Отношение двух чисел
Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел
Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Проценты
Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Диаграммы
Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа Положительные и отрицательные числа
Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе.
Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Решение текстовых задач. Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины.
Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение несложных логических задач. Решение логических задач с помощью графов,
таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
Наглядная геометрия
Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур. Решение практических задач с применением простейших свойств фигур.
История математики
Появление цифр, букв, иероглифов в процессе счёта и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией. Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел. Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена. Появление нуля и отрицательных чисел в математике древности. Роль Диофанта.
Почему (-1 (-1)=+1? Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Содержание курса математики в 7–9 классах
Алгебра
Числа Рациональные числа
Множество рациональных чисел. Сравнение рациональных чисел. Действия с
рациональными числами. Представление рационального числа десятичной дробью.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа √2 . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Целые выражения
Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем. Одночлен, многочлен. Действия с одночленами и многочленами (сложение,
вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.
Дробно-рациональные выражения
Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень. Преобразование выражений, содержащих знак модуля.
Квадратные корни
Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.
Уравнения и неравенства
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).
Линейное уравнение и его корни
Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.
Квадратное уравнение и его корни
Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Дробно-рациональные уравнения
Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений. Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений. Простейшие иррациональные уравнения вида =a , =. Уравнения вида xn= a .Уравнения в целых числах.
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными. Понятие системы уравнений. Решение системы уравнений. Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки. Системы линейных уравнений с параметром.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости при заданных значениях переменных. Неравенство с переменной. Строгие и нестрогие неравенства. Область определения
неравенства (область допустимых значений переменной).
Решение линейных неравенств. Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства. Решение целых и дробно-рациональных неравенств методом интервалов.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Функции. Понятие функции
Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику. Представление об асимптотах. Непрерывность функции. Кусочно-заданные функции.
Линейная функция
Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой
через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.
Квадратичная функция
Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.
Обратная пропорциональность
Свойства функции y= . Гипербола.
Графики функций. Преобразование графика функции y = f ( x) для построения
графиков функций вида y =af (kx+b)+c . Графики функций y =a +, y= , y = , y =\x\ .
Последовательности и прогрессии
Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.
Решение текстовых задач. Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностей
Статистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические
показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.
Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики
Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных
формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины
Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей.
Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Геометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».
Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, круг.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.
Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный
треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный,
остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство
треугольника.
Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция,
равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника,
квадрата.
Окружность, круг
Окружность, круг, их элементы и свойства; центральные и вписанные углы.
Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырёхугольников, правильных многоугольников.
Геометрические фигуры в пространстве (объёмные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения
Равенство фигур
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.
Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади.
Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике. Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур. Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам. Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии «преобразование».
Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль,
Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга.Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса. Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский,
П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
Оценка планируемых результатов
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Особенности оценки предметных результатов
Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.
Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.
Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.
Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.
Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.
Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.
Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).
Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:
• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);
• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).
Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.
Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.
Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:
• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);
• низкий уровень достижений, оценка «плохо» (отметка «1»).
Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.
Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.
Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.
Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.
Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.
Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:
• первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;
• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;
• выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.
При этом обязательными составляющими системы накопленной оценки являются материалы:
• стартовой диагностики;
• тематических и итоговых проверочных работ по всем учебным предметам;
• творческих работ, включая учебные исследования и учебные проекты.
Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.
Уровни подготовки учащихся и критерии успешности обучения по
математике
Уровни Оценка
Теория
Практика
1
Узнавание
Алгоритмическая деятельность с подсказкой
«3»
Распознавать объект, находить нужную формулу, признак, свойство и т.д.
Уметь выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.
2
Воспроизведение
Алгоритмическая деятельность без подсказки
«4»
Знать формулировки всех понятий, их свойства, признаки, формулы.
Уметь воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания
Уметь работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала
3
Понимание
Деятельность при отсутствии явно выраженного алгоритма
«5»
Делать логические заключения, составлять алгоритм, модель несложных ситуаций
Уметь применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.
4
Овладение умственной самостоятельностью
Творческая исследовательская деятельность
«5»
В совершенстве знать изученный материал, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации.
Уметь применять знания в любой нестандартной ситуации. Самостоятельно выполнять творческие исследовательские задания. Выполнять функции консультанта.
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
1. Оценка письменных контрольных работ обучающихся по математике.
Отметка «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
Отметка «2» ставится, если:
Отметка «1» ставится, если:
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2. Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
Контроль ЗУН предлагается при проведении математических диктантов, практических работ, самостоятельных работ обучающего и контролирующего вида, контрольных работ.
Перечень учебно-методического обеспечения
Математика. Арифметика. Геометрия. 5 класс: учебник для общеобразовательных учреждений/ Е.А.Бунимович, Г.В.Дорофеев, С.Б.Суворова и др., «Просвещение» 2013 г.
Математика. Арифметика. Геометрия. Задачник-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Тетрадь-экзаменатор.
5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Поурочное тематическое планирование. 5 класс: пособие для учителей общеобразовательных учреждений/ Л.В.Кузнецова, С.С.Минаева, Л.О. Рослова, С.Б.Суворова и др., «Просвещение» 2011 г.
Математика. Арифметика. Геометрия. 6 класс: учебник для общеобразовательных учреждений/ Е.А.Бунимович, Г.В.Дорофеев, С.Б.Суворова и др., «Просвещение» 2013 г.
Математика. Арифметика. Геометрия. Задачник-тренажёр. 6 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 6 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 6 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2016
Математика. Арифметика. Геометрия. Поурочное тематическое планирование. 6 класс: пособие для учителей общеобразовательных учреждений/ Л.В.Кузнецова, С.С.Минаева, Л.О. Рослова, С.Б.Суворова и др., «Просвещение» 2011 г.
Дорофеев Г. В. и др. Оценка качества подготовки выпускников основной школы по математике. М., «Дрофа», 2001.
Концепция модернизации российского образования на период до 2010// «Вестник образования» -2002- № 6 - с.11-40.
Концепция математического образования (проект)//Математика в школе.- 2000. – № 2. – с.13-18.
Кузнецова Г.М., Миндюк Н.Г. Программы для общеобразовательных школ, гимназий, лицеев. Математика 5 – 11 классы. М., «Дрофа», 2002.
Стандарт основного общего образования по математике//«Вестник образования» -2004 - № 12 - с.107-119.
20