Материалы для научно - практической конференции Делимость многочленов

Автор публикации:

Дата публикации:

Краткое описание: ...


МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 3»



Делимость многочленов


Научно - практическая конференция учащихся

5-7 классов

«Малые грани»

Физико-математическое направление

Математическая секция









Работу выполнили:

Бормотова Яна и Окунев Артем

ученики 7 «В» класса

МБОУ «средняя общеобразовательная школа №3»





Руководитель:

Черняева Ирина Викторовна

учитель математики

МБОУ «средняя общеобразовательная школа №3»










г. Моршанск, Тамбовской области

2013 - 2014 учебный год


Содержание:

Введение______________________________________________________________3

Основная часть__________________________________________________________________4

1.Общие понятия______________________________________________________4

1.1 Одночлен___________________________________________________________ 4

1.2 Многочлен__________________________________________________________ 4

1.3 Стандартный вид многочлена______________________________________ 4

1.4 Степень многочлена________________________________________________ 4

2. Действия с многочленами____________________________________________5

2.1 Сложение (вычитание) многочленов_________________________________5

2.2 Умножение многочленов____________________________________________ 5

2.3 Деление многочленов________________________________________________ 5

3.Делимость многочленов______________________________________________ 6

3.1 Деление нацело______________________________________________________ 6

3.2 Деление с остатком _________________________________________________6

4. Алгоритм Евклида___________________________________________________ 7

4.1 Исторические сведения______________________________________________ 8

4.2 Обобщённый алгоритм Евклида для

многочленов____________________________________________________________ 8

4.3 Ускоренные версии алгоритма_______________________________________9

5. Применение теории делимости________________________________________9

5.1 Разложение на множители__________________________________________9

5.2 Сокращение дробей_________________________________________________ 10

5.3 Решение уравнений__________________________________________________ 10

5.4 Теорема Безу_______________________________________________________ 11

Заключение____________________________________________________________13

Библиография_________________________________________________________ 13








1

ВВЕДЕНИЕ

В данной работе рассматриваются основы теории делимости многочленов и её применение в реальной жизни. Кратко рассказываем об истории возникновения данной теории. В работе представлены формулировки и основные понятия теории делимости многочленов: решение уравнений, сокращение дробей, алгоритм Евклида, теорема Безу. Показан основой принцип деления и его приложения.

Применение теории делимости многочленов является важной частью работы.

Методами исследования являлись: анализ учебной и дополнительной литературы, собственный анализ, решение уравнений и сокращение дробей.

Мы выбрали эту тему, потому что на уроках математики изучали сложение, вычитание, умножение многочленов, а вот деление многочленов нет.

Цели работы:

  • изучить теорию делимости многочленов и области ее применения

  • развитие умений и навыков в исследовательской и научно - практической работе



Для достижения этих целей необходимо изучить основные понятия, теоремы и алгоритмы теории делимости.

С помощью основ теории делимости многочленов можно делить многочлены, раскладывать многочлены на множители, решать уравнения высших степеней, сокращать дроби, решать математические задачи.



Задачи:

  • пропаганда научных знаний и развитие у интереса к будущей профессиональной деятельности

  • активизация поисковой и научно-практической деятельности













2

ОСНОВНАЯ ЧАСТЬ

1. Общие понятия.

1.1 Одночлен.

Одночленом называют алгебраическое выражение, являющееся произведением букв и чисел. Эти буквы и числа являются множителями данного одночлена.

[link] : статья о теореме Безу.

5. ru.math.wikia.com: статья о теореме Евклида.

6. ega-math.narod.ru: статья о вычислениях многочленов.

7. Энциклопедия онлайн «Википедия»: статья о многочленах.

8. Никольский.С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Алгебра: Учебник для 7 класса общеобразовательных учреждений, Москва, Просвещение, 2009 г. (дополнения к главе).


















13