Рабочая программа по математике (10 класс)

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка

Настоящая рабочая программа курса «Математика» для 10 класса составлена на основе:

1. Федерального компонента государственного образовательного стандарта базового уровня среднего общего образования.

2. Примерной учебной программы среднего общего образования Математика.

3. Учебного плана МБОУ «Нижнебишевская средняя общеобразовательная школа» на 2014-2015 учебный год.

4. Основной образовательной программы начального, основного и среднего общего образования МБОУ «Нижнебишевская СОШ» Заинского муниципального района Республики Татарстан;

5. Приказа МО и Н РФ от 31 марта 2014г. №253 « Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2014 – 2015 учебный год»


При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Цели

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 175 часов из расчета 5 часов в неделю.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Тематическое планирование составлено к УМК С.М. Никольского и др. «Алгебра и начала анализа», 10 класс, М. «Просвещение»,2014, Л.С.Атанасяна и др. «Геометрия, 10-11», М. «Просвещение», 2010 на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в журнале «Математика в школе » №2, 2005.




Содержание программы


Действительные числа и элементы комбинаторики (7ч.)

Понятие действительного числа. Свойства действительных чисел. Множества чисел и операции над множествами чисел. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

Основная цель — систематизировать известные и изучить новые сведения о действительных числах.

Рациональные уравнения и неравенства (14ч.)

Рациональные выражения. Формула бинома Ньютона, свойства биноминальных коэффициентов, треугольник Паскаля.

Рациональные уравнения и неравенства, метод интервалов решения неравенств, системы рациональных неравенств.

Основная цель — сформировать умения решать ра­циональные уравнения и неравенства.

Аксиомы стереометрии и их следствия (5ч.)

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Основная цель - сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их использовании при решении стандартных задач логического характера, а также об изображениях точек, прямых и плоскостей на проекционном чертеже при различном их взаимном расположении в пространстве.

Прямые и плоскости в пространстве (41ч.)

Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии.

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Корень степени п (9ч.)

Понятие функции, ее области определения и множества значении, графика функции. Функция y = xn, где n [pic] N, ее свойства и график. Понятие корня степени n>1 и его свойства, понятие арифметического корня.

Основная цель — освоить понятия корня степени п и арифметического корня; выработать умение преобразо­вывать выражения, содержащие корни степени п.

Степень положительного числа (10ч.)

Понятие степени с рациональным показателем, свойства степени с рациональным показателем. Понятие о пределе последовательности. Существование предела монотонной и ограниченной. Бесконечная геометрическая прогрессия и ее сумма.
Число e. Понятие степени с действительным показателем. Свойства степени с действительным показателем. Преобразование выражений, содержащих возведение в степень. Показательная функция, ее свойства и график.

Основная цель — усвоить понятия рациональной и иррациональной степеней положительного числа и пока­зательной функции.

Прямые и плоскости в пространстве (41ч.)

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Основная цель – дать учащимся систематические сведения о параллельности и перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями, между плоскостями. В ходе изучения темы обобщаются и систематизируются знания учащихся о перпендикулярности прямых, перпендикуляре и наклонных, известные им из курса планиметрии. При изучении материала следует обратить внимание на часто используемый метод доказательства от противного, знакомый учащимся из курса планиметрии.

Логарифмы (6ч.)

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени, переход к новому основанию. Десятичный и натуральный логарифмы. Преобразование выражений, содержащих логарифмы.

Логарифмическая функция, ее свойства и график.

Основная цель — освоить понятия логарифма и ло­гарифмической функции, выработать умение преобразовы­вать выражения, содержащие логарифмы.

Показательные и логарифмические уравнения и неравенства (7ч.)

Показательные и логарифмические уравнения и неравенства и методы их решения.

Основная цель — сформировать умение решать по­казательные и логарифмические уравнения и неравенства.

Многогранники (13ч.)

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Основная цель – дать учащимся систематические сведения об основных видах многогранников. Изучение многогранников нужно вести на наглядной основе, опираясь на объекты природы, предметы окружающей действительности.

Синус и косинус угла (7ч.)

Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла и действительного числа. Основное тригонометрическое тождество для синуса и косинуса. Понятия арксинуса, арккосинуса.

Основная цель — освоить понятия синуса и коси­нуса произвольного угла, изучить свойства функций угла: sin α и cos α.

Тангенс и котангенс угла (4ч.)

Тангенс и котангенс угла и числа. Основные тригонометрические тождества для тангенса и котангенса. Понятие арктангенса числа.

Основная цель — освоить понятия тангенса и ко­тангенса произвольного угла, изучить свойства функций угла: tg α и ctg α.

Векторы в пространстве (7 ч.)

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.


Основная цель- обобщить изученный в базовой школе материал о векторах на плоскости, дать систематические сведения о действиях с векторами в пространстве.

Формулы сложения (10ч.)

Синус, косинус и тангенс суммы и разности двух аргументов. Формулы приведения. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений.

Основная цель — освоить формулы косинуса и си­нуса суммы и разности двух углов, выработать умение вы­полнять тождественные преобразования тригонометриче­ских выражений с использованием выведенных формул.

Тригонометрические функции числового аргумента (8ч.)

Тригонометрические функции, их свойства и графики, периодичность, основной период.

Основная цель — изучить свойства основных три­гонометрических функций и их графиков.

Тригонометрические уравнения и неравенства (8ч.)

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства.

Основная цель — сформировать умение решать тригонометрические уравнения и неравенства.

Элементы теории вероятностей (11ч.)

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Основная цель — овладеть классическим понятием вероятности события, понятиями частоты со­бытия и условной вероятности события, независимых собы­тий; изучить его свойства и научиться применять их при решении несложных задач.

Повторение курса математики за 10 класс (8 ч.)






Требования к уровню подготовки десятиклассников

В результате изучения математики на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;

Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле [link]