Рабочая программа 5-6 классы к учебнику под ред.Мерзляка

Автор публикации:

Дата публикации:

Краткое описание: ...




РАБОЧАЯ


ПРОГРАММА


ПО МАТЕМАТИКЕ


на 2016-2017


учебный год



Класс: 5






































Учитель: Алюшина Евгения Ивановна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа по математике для 5 класса разработана с учетом требований ФГОС ООО, утвержденным приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897, в соответствии с авторской программой А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко (Математика: программы : 5–9 классы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко /. — М. : Вентана-Граф, 2014. — 152 с.) и УМК:

  1. Математика: 5 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2016.

  2. Математика: 5 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. - М. : Вентана-Граф, 2014.

  3. Математика: 5 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. - М. : Вентана-Граф, 2014.

  4. Математика: 6 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2016.

  5. Математика: 6 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. - М. : Вентана-Граф, 2015.

  6. Математика: 6 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. - М. : Вентана-Граф, 2015.

МЕСТО ПРЕДМЕТА В ФЕДЕРАЛЬНОМ БАЗИСНОМ УЧЕБНОМ ПЛАНЕ

Согласно федеральному базисному учебному плану в 5-6 классе основной школы 5 ч в неделю, всего 5ч*34 нед.=170 часов, в т.ч. 10 контрольных работ.


ФОРМЫ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ

Промежуточная аттестация проводится в форме тестов, контрольных, проверочных и самостоятельных работ.


УРОВЕНЬ ОБУЧЕНИЯ – базовый.



ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕИ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА МАТЕМАТИКИ

Изучение математики способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  1. воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

  2. ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  3. осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

  4. умение контролировать процесс и результат учебной и математической деятельности;

  5. критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

  1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

  2. умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

  3. умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  4. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

  5. развитие компетентности в области использования информационно-коммуникационных технологий;

  6. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  7. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  8. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

  9. умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  10. умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;

  11. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  1. осознание значения математики для повседневной жизни человека;

  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования; владение базовым понятийным аппаратом по основным разделам содержания;

  • практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:

  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;

  • решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;

  • изображать фигуры на плоскости;

  • использовать геометрический «язык» для описания предметов окружающего мира;

  • измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;

  • распознавать и изображать равные и симметричные фигуры;

  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;

  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;

  • строить на координатной плоскости точки по заданным координатам, определять координаты точек;

  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;

  • решать простейшие комбинаторные задачи перебором возможных вариантов.


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ПО РАЗДЕЛАМ:

Ученик получит возможность: ответственно относится к учебе, контролировать процесс и результат учебной и математической деятельности.

Критично мыслить, быть инициативным, находчивым, активным при решении геометрических задач.

Ученик научится:

действовать по алгоритму, видеть геометрическую задачу в окружающей жизни, представлять информацию в различных моделях.

Ученик получит возможность:

Извлекать необходимую информацию, анализировать ее, точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования.

Ученик научится: изображать фигуры на плоскости;

использовать геометрический «язык» для описания

предметов окружающего мира;

измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;

распознавать и изображать равные и симметричные

фигуры;

проводить не сложные практические вычисления.

Ученик получит возможность:

углубить и развить представления о геометрических фигурах.

Арифметика

Ученик получит возможность:

Ответственно относится к учебе,

Грамотно излагать свои мысли

Критично мыслить, быть инициативным, находчивым, активным при решении математических задач.

Ученик научится:

Действовать по алгоритму,

Видеть математическую задачу в окружающей жизни.

Представлять информацию в различных моделях

Ученик получит возможность:

Устанавливать причинно-следственные связи.

Строить логические рассуждения,

Умозаключения и делать выводы

Развить компетентность в области использования информационно-комуникативных технологий.

Ученик научится:

понимать особенности десятичной системы счисления;

Формулировать и применять при вычислениях свойства действия над рациональными ( неотриц.) числами4

Решать текстовые задачи с рациональными числами;

Выражать свои мысли с использованием математического языка.


Ученик получит возможность:

Углубить и развить представления о натуральных числах;

Использовать приемы рационализирующие вычисления и решение задач с рациональными( неотр.) числами.

Числовые и буквенные выражения. Уравнения.

Ученик получит возможность:

Ответственно относится к учебе.

Грамотно излагать свои мысли

Контролировать процесс и результат учебной деятельности

Освоить национальные ценности, традиции и культуру родного края используя краеведческий материал.

Ученик научится:

Действовать по алгоритму; видеть математическую задачу в различных формах.

Ученик получит возможность: Выделять альтернативные способы достижения цели и выбирать эффективные способы решения.

Ученик научится:

Читать и записывать буквенные выражения, составлять буквенные выражения.

Составлять уравнения по условию.

Решать простейшие уравнения.

Ученик получит возможность:

Развить представления о буквенных выражениях

Овладеть специальными приемами решения уравнений, как текстовых, так и практических задач.

Комбинаторные задачи

Ученик получит возможность : ответственно относится к учебе,

контролировать процесс и результат учебной и математической деятельности.

Критично мыслить, быть инициативным, находчивым, активным при решении комбинаторных задач.

Ученик научится:

Представлять информацию в различных моделях.

Ученик получит возможность:

Выделять альтернативные способы достижения цели и выбирать эффективные способы решения

Ученик научится:

Решать комбинаторные задачи с помощью перебора вариантов.

Ученик получит возможность:

Приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения;

Осуществлять их анализ, представлять результаты опроса в виде таблицы.

Научится некоторым приемам решения комбинаторных задач.


РАБОТА С ОДАРЕННЫМИ ДЕТЬМИ.

На уроках проводится работа с одаренными детьми (дифференциация и индивидуализация в обучении):

- разноуровневые задания (обучающие и контролирующие);

- обучение самостоятельной работе (работа самостоятельно с учебником, с дополнительной литературой);

- развивающие задачи, в том числе олимпиадные задачи;

- творческие задания (составить задачу, выражение, кроссворд, ребус, анаграмму и т. д.).


РЕГИОНАЛЬНЫЙ КОМПОНЕНТ

Изучение обучающимися региональных особенностей учитывается при проведении уроков математики, вопросы энергосбережения предусмотрено рассматривать 1 раз в месяц.


ПРИМЕНЕНИЕ ИКТ НА УРОКАХ:

Предусмотрено данной программой применение на уроках ИКТ, в форме наглядных презентаций для устного счета, при изучении материала, для контроля знаний, что обусловлено:

  • улучшением наглядности изучаемого материала,

  • увеличением количества предлагаемой информации,

  • уменьшением времени подачи материала

Источники:

  • Учебно-методический комплекс. Преподавание по новым стандартам. Издательства "Учитель", CD, 2013

  • Уроки математики 5-6 классы, 5-10 классы с применением ИКТ, Издательство "Планета",2012

  • [link] 158-170

    Повторение и систематизация учебного материала курса математики 6 класса

    17



    Итоговая контрольная работа (промежуточная аттестация)

    1

    (в соответствии с авторской программой):


    ОЦЕНКА УСТНЫХ ОТВЕТОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ

     

    Ответ оценивается отметкой «5», если ученик:

    1. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,

    2. изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

    3. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

    4. показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

    5. продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;

    6. отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

    Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

    • в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

    • допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;

    • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

     Отметка «3» ставится в следующих случаях:

    • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке обучающихся»);

    • имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

    • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

    • при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

     Отметка «2» ставится в следующих случаях:

    • не раскрыто основное содержание учебного материала;

    • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

    • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

     Отметка «1» ставится, если:

    • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

     ОЦЕНКА ПИСЬМЕННЫХ КОНТРОЛЬНЫХ РАБОТ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ

     

    Отметка «5» ставится, если:

    • работа выполнена полностью;

    • в логических  рассуждениях и обосновании решения нет пробелов и ошибок; 

    • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

    Отметка «4» ставится, если:

    • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

    • допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

     Отметка «3» ставится, если:

    • допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

     Отметка «2» ставится, если:

    • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.

    Отметка «1» ставится, если:

    • работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

    ОБЩАЯ КЛАССИФИКАЦИЯ ОШИБОК

    Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

     К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

    Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


    ПЕЧАТНЫЕ ПОСОБИЯ

    1. Таблицы по математике для 5 класса.

    2. Портреты выдающихся деятелей математики.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ

    1. Компьютер.

    2. Мультимедиа проектор.

    3. Экран навесной.


    УЧЕБНО-ПРАКТИЧЕСКОЕ И УЧЕБНО-ЛАБОРАТОРНОЕ ОБОРУДОВАНИЕ

    1. Доска магнитная с координатной сеткой.

    2. Наборы «Части целого на круге», «Простые дроби».

    3. Наборы геометрических тел (демонстрационный).

    4. Модель единицы объёма.

    5. Комплект чертёжных инструментов (классных и личных): линейка, транспортир, угольник (30°, 60°), угольник (45°, 45°), циркуль.

    6. Наборы для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).