А-10 Ср-05 ВАРИАНТ 17
А-10 Ср-05
ВАРИАНТ 18
А-10 Ср-05
ВАРИАНТ 19
А-10 Ср-05
ВАРИАНТ 20
Решите тригонометрические уравнения:
1. 12cos2 x – 20cos x + 7 = 0
2. 5cos2 x – 12sin x – 12 = 0
3. 3sin2 x + 13sin x cos x + 12cos2 x = 0
4. 5 tg x – 6ctg x + 7 = 0
5. sin2 x + 2sin 2x = 5cos2 x
6. 13sin 2x – 3cos 2x = –13
Решите тригонометрические уравнения:
1. 3sin2 x – 10sin x + 7 = 0
2. 8sin2 x + 10cos x – 1 = 0
3. 4sin2 x + 13sin x cos x + 10cos2 x = 0
4. 3 tg x – 3ctg x + 8 = 0
5. sin 2x + 4cos2 x = 1
6. 10cos2 x – 9sin 2x = 4cos 2x – 4
Решите тригонометрические уравнения:
1. 6cos2 x – 7cos x – 5 = 0
2. 3cos2 x + 7sin x – 7 = 0
3. 3sin2 x + 7sin x cos x + 2cos2 x = 0
4. 2 tg x – 4ctg x + 7 = 0
5. sin 2x – 22cos2 x + 10 = 0
6. 2sin2 x – 3sin 2x – 4cos 2x = 4
Решите тригонометрические уравнения:
1. 5sin2 x + 12sin x + 7 = 0
2. 10sin2 x – 11cos x – 2 = 0
3. 4sin2 x + 13sin x cos x + 3cos2 x = 0
4. 6 tg x – 10ctg x + 7 = 0
5. 14cos2 x + 5sin 2x = 2
6. 4sin 2x = 4 – cos 2x
А-10 Ср-05
ВАРИАНТ 21
А-10 Ср-05
ВАРИАНТ 22
А-10 Ср-05
ВАРИАНТ 23
А-10 Ср-05
ВАРИАНТ 24
Решите тригонометрические уравнения:
1. 6cos2 x + 11cos x + 4 = 0
2. 2cos2 x – 3sin x + 3 = 0
3. 2sin2 x + 7sin x cos x + 6cos2 x = 0
4. 4 tg x – 3ctg x + 11 = 0
5. 9sin 2x + 22sin2 x = 20
6. 8sin2 x + 7sin 2x + 3cos 2x + 3 = 0
Решите тригонометрические уравнения:
1. 2sin2 x + 3sin x – 5 = 0
2. 10sin2 x – 17cos x – 16 = 0
3. 5sin2 x + 13sin x cos x + 6cos2 x = 0
4. 3 tg x – 14ctg x + 1 = 0
5. 10sin2 x + 13sin 2x + 8 = 0
6. 6cos2 x + cos 2x = 1 + 2sin 2x
Решите тригонометрические уравнения:
1. 10cos2 x + 11cos x – 8 = 0
2. 4cos2 x – 11sin x – 11 = 0
3. 3sin2 x + 8sin x cos x + 4cos2 x = 0
4. 5 tg x – 12ctg x + 11 = 0
5. 5sin 2x + 22sin2 x = 16
6. 2sin2 x – 10cos 2x = 9sin 2x + 10
Решите тригонометрические уравнения:
1. 4sin2 x + 11sin x + 7 = 0
2. 8sin2 x – 14cos x + 1 = 0
3. 2sin2 x + 9sin x cos x + 9cos2 x = 0
4. 6 tg x – 2ctg x + 11 = 0
5. 8sin2 x – 7 = 3sin 2x
6. 11sin 2x = 11 – cos 2x
А-10 Ср-05
ВАРИАНТ 25
А-10 Ср-05
ВАРИАНТ 26
А-10 Ср-05
ВАРИАНТ 27
А-10 Ср-05
ВАРИАНТ 28
Решите тригонометрические уравнения:
1. 2cos2 x + 3cos x – 5 = 0
2. 6cos2 x – 11sin x – 10 = 0
3. sin2 x + 7sin x cos x + 12cos2 x = 0
4. 7 tg x – 8ctg x + 10 = 0
5. 9cos2 x – sin2 x= 4sin 2x
6. 7sin 2x + 3cos 2x + 7 = 0
Решите тригонометрические уравнения:
1. 10sin2 x + 17sin x + 6 = 0
2. 3sin2 x + 7cos x – 7 = 0
3. 3sin2 x + 11sin x cos x + 10cos2 x = 0
4. 5 tg x – 9ctg x + 12 = 0
5. 3sin2 x + 5sin 2x + 7cos2 x = 0
6. 12cos2 x + cos 2x = 5sin 2x + 1
Решите тригонометрические уравнения:
1. 5cos2 x + 12cos x + 7 = 0
2. 10cos2 x + 17sin x – 16 = 0
3. 2sin2 x + 9sin x cos x + 4cos2 x = 0
4. 4 tg x – 6ctg x + 5 = 0
5. 8sin2 x + 3sin 2x = 14cos2 x
6. 2sin2 x – 7cos 2x = 6sin 2x + 7
Решите тригонометрические уравнения:
1. 12sin2 x – 20sin x + 7 = 0
2. 3sin2 x + 5cos x + 5 = 0
3. 3sin2 x + 13sin x cos x + 14cos2 x = 0
4. 3 tg x – 4ctg x + 11 = 0
5. 8cos2 x + 7sin 2x + 6sin2 x = 0
6. 1 – cos 2x = 18cos2 x – 8sin 2x
А-10 Ср-05
ВАРИАНТ 29
А-10 Ср-05
ВАРИАНТ 30
А-10 Ср-05
ВАРИАНТ 31
А-10 Ср-05
ВАРИАНТ 32
Решите тригонометрические уравнения:
1. 4cos2 x + 11cos x + 7 = 0
2. 10cos2 x – 11sin x – 2 = 0
3. 2sin2 x + 13sin x cos x + 6cos2 x = 0
4. 3 tg x – 2ctg x + 5 = 0
5. 7sin 2x + 2 = 18cos2 x
6. 13sin 2x + 13 = –5cos 2x
Решите тригонометрические уравнения:
1. 8sin2 x + 14sin x – 9 = 0
2. 2sin2 x + 5cos x + 5 = 0
3. sin2 x + 9sin x cos x + 14cos2 x = 0
4. 2 tg x – 5ctg x + 9 = 0
5. 7sin2 x + 5sin 2x + 3cos2 x = 0
6. 2sin2 x + 9sin 2x = 10cos 2x + 10
Решите тригонометрические уравнения:
1. 3cos2 x – 7cos x + 4 = 0
2. 8cos2 x + 10sin x – 1 = 0
3. 3sin2 x + 13sin x cos x + 4cos2 x = 0
4. 5 tg x – 14ctg x + 3 = 0
5. 7sin 2x = 22sin2 x – 4
6. cos 2x + 8sin 2x = 1 – 18cos2 x
Решите тригонометрические уравнения:
1. 8sin2 x – 10sin x – 7 = 0
2. 2sin2 x – 3cos x + 3 = 0
3. 2sin2 x + 11sin x cos x + 12cos2 x = 0
4. 4 tg x – 14ctg x + 1 = 0
5. 4sin 2x + 10cos2 x = 1
6. 11sin 2x – 7cos 2x = 11
1. – + 2n {–1; 7/2} 2. + 2n {1/2; 7/6}
3. –arctg 4 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg 6 + k
6. – + n; –arctg + k
1. + 2n {1/2; 6/5}
2. – + 2n {–1; 7/2}
3. –arctg 2 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 7 + k
1. + 2n {1; 4/3}
2. + 2n {-1/2; -4/3}
3. –arctg 3 + n; –arctg 2 + k
4. –arctg 4 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 8 + k
1. + 2n {-1/2; -6/5}
2. + 2n {1; 7/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. – + n; arctg 4 + k
6. + n; arctg + k
ВАРИАНТ 5
ВАРИАНТ 6
ВАРИАНТ 7
ВАРИАНТ 8
1. (–1)n + n {1/2; -8/5}
2. + 2n {–1; -7/4}
3. –arctg 2 + n; –arctg + k
4. –arctg 4 + n; arctg + k
5. + n; –arctg 7 + k
6. – + n; –arctg + k
1. 2n {1; 7/3}
2. (–1)n + 1 + n {-1/2; 5/3}
3. –arctg 3 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 8 + k
1. (–1)n + 1 + n {-1/2; 5/3}
2. 2n {1; 7/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 5 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 3 + k
1. + 2n {–1; 8/3}
2. (–1)n + n {1/2; -9/4}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. – + n; arctg 5 + k
6. + n; arctg + k
ВАРИАНТ 9
ВАРИАНТ 10
ВАРИАНТ 11
ВАРИАНТ 12
1. (–1)n + 1 + n {-1/2; -4/3}
2. 2n {1; -5/4}
3. –arctg 3 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg 3 + k
6. – + n; –arctg + k
1. 2n {1; -5/4}
2. (–1)n + 1 + n {-1/2; -6/5}
3. –arctg 2 + n; –arctg 4 + k
4. –arctg 3 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 4 + k
1. (–1)n + n {1/2; 6/5}
2. + 2n {–1; -7/5}
3. –arctg 2 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 5 + k
1. + 2n {–1; 7/2}
2. (–1)n + n {1/2; 7/6}
3. –arctg 2 + n; –arctg + k
4. –arctg 6 + n; arctg + k
5. – + n; arctg 10 + k
6. + n; arctg + k
ВАРИАНТ 13
ВАРИАНТ 14
ВАРИАНТ 15
ВАРИАНТ 16
1. + 2n {1; -5/4}
2. + 2n {-1/2; 5/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. + n; –arctg 3 + k
6. – + n; –arctg + k
1. + 2n {-1/2; 7/4}
2. + 2n {1; -5/4}
3. –arctg 2 + n; –arctg + k
4. –arctg 4 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 5 + k
1. – + 2n {–1; 8/3}
2. + 2n {1/2; 6/5}
3. –arctg 2 + n; –arctg 6 + k
4. –arctg 3 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 6 + k
1. + 2n {1/2; -9/4}
2. – + 2n {–1; 8/3}
3. –arctg 5 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. – + n; arctg 8 + k
6. + n; arctg + k
1. + 2n {1/2; 7/6} 2. – + 2n {–1; -7/5}
3. –arctg 3 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg 5 + k
6. – + n; –arctg + k
1. + 2n {1; 7/3}
2. + 2n {-1/2; 7/4}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. – + n; arctg 3 + k
6. + n; arctg + k
1. + 2n {-1/2; 5/3}
2. + 2n {1; 4/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 4 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 4 + k
1. – + 2n {–1; -7/5}
2. + 2n {1/2; -8/5}
3. –arctg 3 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. – + n; arctg 6 + k
6. + n; arctg + k
ВАРИАНТ 21
ВАРИАНТ 22
ВАРИАНТ 23
ВАРИАНТ 24
1. + 2n {-1/2; -4/3}
2. + 2n {1; -5/2}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. + n; –arctg 10 + k
6. – + n; –arctg + k
1. + 2n {1; -5/2}
2. + 2n {-1/2; -6/5}
3. –arctg 2 + n; –arctg + k
4. arctg 2 + n; –arctg + k
5. – + n; –arctg + k
6. + n; –arctg 3 + k
1. + 2n {1/2; -8/5}
2. – + 2n {–1; -7/4}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 10 + k
1. – + 2n {–1; -7/4}
2. + 2n {1/2; -9/4}
3. –arctg 3 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. – + n; arctg 7 + k
6. + n; arctg + k
ВАРИАНТ 25
ВАРИАНТ 26
ВАРИАНТ 27
ВАРИАНТ 28
1. 2n {1; -5/2}
2. (–1)n + 1 + n {-1/2; -4/3}
3. –arctg 4 + n; –arctg 3 + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg 9 + k
6. – + n; –arctg + k
1. (–1)n + 1 + n {-1/2; -6/5}
2. 2n {1; 4/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 3 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 6 + k
1. + 2n {–1; -7/5}
2. (–1)n + n {1/2; 6/5}
3. –arctg 4 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 7 + k
1. (–1)n + n {1/2; 7/6}
2. + 2n {–1; 8/3}
3. –arctg 2 + n; –arctg + k
4. –arctg 4 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 9 + k
ВАРИАНТ 29
ВАРИАНТ 30
ВАРИАНТ 31
ВАРИАНТ 32
1. + 2n {–1; -7/4}
2. (–1)n + n {1/2; -8/5}
3. –arctg 6 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg 8 + k
6. – + n; –arctg + k
1. (–1)n + n {1/2; -9/4}
2. + 2n {–1; 7/2}
3. –arctg 2 + n; –arctg 7 + k
4. –arctg 5 + n; arctg + k
5. – + n; –arctg + k
6. + n; –arctg 10 + k
1. 2n {1; 4/3}
2. (–1)n + 1 + n {-1/2; 7/4}
3. –arctg 4 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. + n; –arctg + k
6. – + n; arctg 9 + k
1. (–1)n + 1 + n {-1/2; 7/4}
2. 2n {1; -5/2}
3. –arctg 4 + n; –arctg + k
4. –arctg 2 + n; arctg + k
5. – + n; arctg 9 + k
6. + n; arctg + k