ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Рабочая программа по учебному курсу «Математика» в 9 классе составлена на основе авторских программ линии Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова по алгебре (Программа для общеобразовательных учреждений. Алгебра 7-9 классы. М. «Просвещение» 2009г) и линии А.С. Атанасян, В.Ф. Бутузов, и др. по геометрии (Программа для общеобразовательных учреждений. Геометрия 7-9 классы. М. «Просвещение» 2008г).
Программа реализуется в учебниках «Алгебра» для 9 класса общеобразовательного учреждения / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова – М. «Просвещение», 2011
г. и «Геометрия» для 7-9 классов общеобразовательных учреждений / А.С. Атанасян, В.Ф. Бутузов, и др. – «Просвещение» 2008г.
Структура документа
Данная программа включает следующие разделы:
Пояснительная записка
Требования к уровню подготовки обучающихся
Календарно-тематическое планирование
Содержание программы
Средства контроля
Учебно-методический комплект
Общая характеристика учебного предмета
Математическое образование в 9 классе складывается из следующих содержательных компонентов: алгебра, геометрия, элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
В ходе освоения содержания курса учащиеся получают возможность:
Развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
Овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
Изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
Развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
Получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
Развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
Сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Цели
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Место предмета в федеральном базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики в 9 классе отводиться 175 часов из них 105 часов на алгебру 3ч в неделю, остальные на геометрию.
В настоящей рабочей программе изменено соотношение часов на изучение темы квадратичная функция – 1 час, уравнения и неравенства с одной переменной 2 час, уравнения и неравенства с двумя переменными 1 час, арифметическая и геометрическая прогрессии 1 час, элементы комбинаторики и теории вероятности – 1 час, метод координат 1 час, соотношения между сторонами и углами треугольника 1 час, длина окружности и площадь круга 1 час, движения 1 час, эти часы взяты из резервного времени для проведения зачётных занятий по данным темам.
Итоговый контроль знаний, умений осуществляется по средствам контрольных работ после изучения тем. В рабочей программе предусматриваются практические работы в форме самостоятельных работ и тестов с целью закрепления теоретических знаний и применения их в практической деятельности, всего запланировано 43 работы.
Количество часов отведённых на выполнение контрольных работ 15: 10 по алгебре и 5 по геометрии:
Квадратный трёхчлен.
Квадратичная функция.
Уравнения с одной переменной.
Неравенства с одной переменной.
Уравнения и неравенства с двумя переменными.
Арифметическая прогрессия.
Геометрическая прогрессия.
Элементы комбинаторики и теории вероятностей.
Векторы. Метод координат.
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.
Длина окружности и площадь круга.
Движения.
Итоговая работа по алгебре.
Итоговая работа по геометрии.
Общеучебные умения, навыки и способы деятельности
В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
Планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
Решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
Исследовательской деятельности, развитие идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
Ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
Проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
Поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Результаты обучения
Результаты обучения представлены в требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ
В результате изучения математики ученик должен
Знать/понимать
Существо понятия математического доказательства; примеры доказательств;
Существо понятия алгоритма; примеры алгоритмов;
Как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
Как математически определённые функции могут описывать реальные зависимости; приводить примеры такого описания;
Как потребности практики привели математическую науку к необходимости расширения понятия числа;
Вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
Каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
Смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
Алгебра
Уметь
Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
Выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
Применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
Решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложных нелинейные системы;
Решать линейные и квадратные неравенства с одной переменной и их системы;
Решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
Изображать числа точками на координатной прямой;
Определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
Распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
Находить значение функции, заданной формулой, таблицей, графиком по её аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
Определять свойства функции по её графику; применять графические представления при решении уравнений, систем, неравенств;
Описывать свойства изученных функций, строить их графики;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
Выполнения расчётов по формулам, составление формул, выражающих зависимости между реальными величинами; нахождение нужной формулы в справочных материалах;
Моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
Описание зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
Интерпретации графиков реальных зависимостей между величинами;
Геометрия
Уметь
Пользоваться языком геометрии для описания предметов окружающего мира;
Распознавать геометрические фигуры, различать их взаимное расположение;
Изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
Распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
В простейших случаях строить сечения и развертки пространственных тел;
Проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
Вычислять значения геометрических величин (длин, углов, площадей, объёмов); в том числе: для углов от 0о до 180о определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломанных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
Решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
Проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
Решать простейшие планиметрические задачи в пространстве;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
Описание реальных ситуаций на языке геометрии;
Расчётов, включающих простейшие тригонометрические формулы;
Решение геометрических задач с использованием тригонометрии;
Решение практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
Построение геометрическими инструментами (линейка, угольник, циркуль, транспортир);
Элементы логики, комбинаторики, статистики и теории вероятностей
Уметь
Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
Извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
Решать комбинаторные задачи путём систематического перебора возможных вариантов, а также с использованием правила умножения;
Вычислять средние значения результатов измерений;
Находить частоту события, используя собственные наблюдения и готовые статистические данные;
Находить вероятности случайных событий в простейших случаях;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
Выстраивать аргументации при доказательстве (в форме монолога и диалога);
Распознавания логически некорректных рассуждений;
Записи математических утверждений, доказательств;
Анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
Решение практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
Решение учебных и практических задач, требующих систематического перебора вариантов;
Сравнение шансов наступления случайных событий в практических ситуациях, сопоставление модели с реальной ситуацией;
Понимание статистических утверждений.
СОДЕРЖАНИЕ ПРОГРАММЫ
По алгебре:
Свойства функций – 23ч.
Функция. Свойства функций. Квадратный трёхчлен. Разложение квадратного трёхчлена на множители. Функция y=ax2+bx+c, её свойства и график. Степенная функция.
2. Уравнения и неравенства с одной переменной – 16ч.
Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.
3. Уравнения и неравенства с двумя переменными – 18ч.
Уравнения с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.
4. Прогрессии – 16ч.
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
5. Элементы комбинаторики и теории вероятностей – 14ч.
Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.
6. Повторение – 18ч.
По геометрии:
1. Векторы. Метод координат – 19ч.
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
2. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов – 12ч.
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
3. Длина окружности и площадь круга – 13ч.
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
4. Движения – 9ч.
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
5. Об аксиомах планиметрии – 2ч.
Беседа об аксиомах геометрии.
6. Начальные сведения из стереометрии – 8ч.
Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объёмов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхности и объёмов.
7. Повторение. Решение задач – 7ч.
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ
1. Программы общеобразовательных учреждений по геометрии 7-9 классы – Т.А. Бурмистрова, «Просвещение», 2008г.
2. Программы общеобразовательных учреждений по алгебре 7-9 классы – Т.А. Бурмистрова, «Просвещение», 2009г.
3. С.А. Теляковский – Алгебра 9 класс, «Просвещение», 2011г.
4. А.С. Атанасян – Геометрия 7-9 классы, «Просвещение», 2008г.
5. Рабочая тетрадь по геометрии 9 класс, «Просвещение», 2007г.
6. Б.Г. Зив, В.М. Мейлер – Дидактические материалы по геометрии 9 класс, «Просвещение», 2011г.
7. Ю.Н. Макарычев, Н.Г. Миндюк, Л.Б. Крайнева – Дидактические материалы по алгебре 9 класс, «Просвещение», 2010г.
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
1 2
1
2
Функция. Область определения и область значений функции.
2
1.09
2.09
3
4
5
3
4
5
Свойства функций.
3
3.09
4.09
5.09
С/р №1 (1,2)
6
7
6
7
Квадратный трёхчлен и его корни.
2
8.09
9.09
С/р №2 (4)
8
9
8
9
Разложение квадратного трёхчлена на множители.
2
10.09
11.09
С/р №3 (6)
10
10
Контрольная работа №1 «Квадратный трёхчлен».
1
12.09
К/р №1
11
12
11
12
Функция y=ax2, её график и свойства.
2
15.09
16.09
13
14
13
14
Графики функций y=ax2+n и y=a(x – m)2.
2
17.09
18.09
С/р №4 (7)
15
16
17
15
16
17
Построение графика квадратичной функции.
3
19.09
22.09
23.09
С/р №5 (8)
Тест №1
18
19
18
19
Функция y=xn.
2
24.09
25.09
20
21
20
21
Корень n-ой степени.
2
26.09
29.09
С/р №6 (10)
Тест №2
22
22
Зачёт №1: «Квадратичная функция».
1
30.09
Зачёт №1
23
23
Контрольная работа №2: «Действия с рациональными дробями».
1
1.10
К/р №2
Глава IX: Векторы.
8
24
25
1
2
Понятие вектора.
2
2.10
3.10
26
27
28
3
4
5
Сложение и вычитание векторов.
3
6.10
7.10
8.10
29
30
31
6
7
8
Умножение вектора на число. Применение векторов к решению задач.
3
9.10
10.10
13.10
Глава X: Метод координат.
11
32
33
1
2
Координаты вектора.
2
14.10
15.10
Тест №1
34
35
3
4
Простейшие задачи в координатах.
2
16.10
17.10
С/р №1 (3)
36
37
38
5
6
7
Уравнения окружности и прямой.
3
20.10
21.10
22.10
С/р №2 (7)
39
40
8
9
Решение задач.
2
23.10
24.10
Тест №2
41
10
Зачёт №1 по теме: «Метод координат».
1
27.10
Зачёт №1
42
11
Контрольная работа №1 по теме: «Метод координат».
1
28.10
К/р №1
Глава II: Уравнения и неравенства с одной переменной.
16
43
44
45
46
1
2
3
4
Целое уравнение и его корни.
4
29.10
30.10
31.10
10.11
С/р №7 (12)
47
48
49
50
5
6
7
8
Дробные рациональные уравнения.
4
11.11
12.11
13.11
14.11
С/р №8 (15)
51
9
Контрольная работа №3: «Уравнения с одной переменной».
1
17.11
К/р №3
52
53
10
11
Решение неравенств второй степени с одной переменной.
2
18.11
19.11
С/р №9 (16)
54
55
56
12
13
14
Решение неравенств методом интервалов.
3
20.11
21.11
24.11
С/р №10 (17)
Тест №3
57
15
Контрольная работа №4: «Неравенства с одной переменной».
1
25.11
К/р №4
58
16
Зачёт №2: «Уравнения и неравенства с одной переменной».
1
26.11
Зачёт №2
Глава III: Уравнения и неравенства с двумя переменными.
18
59
60
1
2
Уравнение с двумя переменными и его график.
2
27.11
28.11
61
62
63
3
4
5
Графический способ решения систем уравнений.
3
1.12
2.12
3.12
С/р №11 (20)
64
65
66
6
7
8
Решение систем уравнений второй степени.
3
4.12
5.12
8.12
С/р №12 (21)
67
68
69
70
9
10
11
12
Решение задач с помощью систем уравнений второй степени.
4
9.12
10.12
11.12
12.12
С/р №13 (22)
Тест №4
71
72
13
14
Неравенства с двумя переменными.
2
15.12
16.12
73
74
15
16
Системы неравенств с двумя переменными.
2
17.12
18.12
С/р №14 (24)
Тест №5
75
17
Зачёт №3: «Уравнения и неравенства с двумя переменными».
1
19.12
Зачёт №3
76
18
Контрольная работа №5 «Уравнения и неравенства с двумя переменными.».
1
22.12
К/р №5
Глава XI: Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.
12
77
78
79
1
2
3
Синус, косинус, тангенс угла.
3
23.12
24.12
25.12
Тест №3
80
81
82
83
4
5
6
7
Соотношения между сторонами и углами треугольника.
4
26.12
27.12
29.12
30.12
Тест №4
84
85
8
9
Скалярное произведение векторов.
2
12.01
13.01
Тест №5
86
10
Решение задач.
1
14.01
87
11
Зачёт №2 по теме: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов».
1
15.01
Зачёт №2
88
12
Контрольная работа №2: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов».
1
16.01
К/р №2
Глава XII: «Длина окружности и площадь круга».
13
89
90
91
92
1
2
3
4
Правильные многоугольники.
4
19.01
20.01
21.01
22.01
С/р №3 (15)
Тест №6
93
94
95
96
5
6
7
8
Длина окружности и площадь круга.
4
23.01
26.01
27.01
28.01
С/р №4 (17)
Тест №7
97
98
99
9
10
11
Решение задач.
3
29.01
30.01
31.01
100
12
Зачёт №3 по теме: «Длина окружности и площадь круга».
1
2.02
Зачёт №3
101
13
Контрольная работа №3 по теме: «Длина окружности и площадь круга».
1
3.02
К/р №3
Глава IV: Арифметическая и геометрическая прогрессии.
16
102
103
1
2
Последовательности.
2
4.02
5.02
104
105
3
4
Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии.
2
6.02
9.02
С/р №15 (26)
106
107
108
5
6
7
Формула суммы первых n членов арифметической прогрессии.
3
10.02
11.02
12.02
С/р №16 (27)
Тест №6
109
8
Контрольная работа №6: «Арифметическая прогрессия».
1
13.02
К/р №6
110
111
112
9
10
11
Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии.
3
14.02
16.02
17.02
С/р №17 (28)
113
114
115
12
13
14
Формула суммы первых n членов геометрической прогрессии.
3
18.02
19.02
20.02
С/р №18 (29)
Тест №7
116
15
Контрольная работа №7: «Геометрическая прогрессия».
1
21.02
К/р №7
117
16
Зачёт №4: «Арифметическая и геометрическая прогрессии».
1
24.02
Зачёт №4
Глава XIII: Движения.
9
118
119
120
1
2
3
Понятие движения.
3
25.02
26.02
27.02
С/р №5 (18)
121
122
123
4
5
6
Параллельный перенос и поворот.
3
2.03
3.03
4.03
124
7
Решение задач.
1
5.03
Тест №8
125
8
Зачёт №4 по теме: «Движения».
1
6.03
Зачёт №4
126
9
Контрольная работа №4 по теме: «Движения».
1
7.03
К/р №4
Глава V: Элементы комбинаторики и теории вероятностей.
14
127
1
Примеры комбинаторных задач.
1
10.03
128
129
2
3
Перестановки.
2
11.03
12.03
С/р №19 (30)
130
131
132
4
5
6
Размещения.
3
13.03
16.03
17.03
133
134
135
7
8
9
Сочетания.
3
18.03
19.03
20.03
С/р №20 (31)
136
10
Относительная частота случайного события.
1
30.03
137
138
11
12
Вероятность равновозможных событий.
2
31.03
1.04
С/р №21 (32)
139
13
Зачёт №5: «Элементы комбинаторики и теории вероятностей».
1
2.04
Зачёт №5
140
14
Контрольная работа №8: «Элементы комбинаторики и теории вероятностей».
1
3.04
К/р №8
Повторение.
18
141
142
143
1
2
3
Вычисления.
3
4.04
6.04
7.04
144
145
146
4
5
6
Торжественные преобразования.
3
8.04
9.04
10.04
147
148
149
7
8
9
Уравнения и системы уравнений.
3
13.04
14.04
15.04
150
151
152
10
11
12
Неравенства.
3
16.04
17.04
20.04
153
154
155
13
14
15
Функции.
3
21.04
22.04
23.04
156
157
16
17
Итоговая контрольная работа по алгебре.
2
24.04
27.04
К/р №9
158
18
Итоговый урок.
1
28.04
Глава XIV: Начальные сведения из стереометрии.
8
159
160
161
162
1
2
3
4
Многогранники.
4
29.04
30.04
2.05
5.05
163
164
165
166
5
6
7
8
Тела и поверхности вращения.
4
6.05
7.05
8.05
11.05
167
168
1
2
Об аксиомах планиметрии.
2
12.05
13.05
Повторение.
7
169
170
1
2
Применение определений, свойств и признаков.
2
14.05
15.05
171
172
3
4
Применение метрических соотношений и формул.
2
18.05
19.05
173
5
Неравенство треугольника, взаимное расположение фигур, вписанные и описанные многоугольники.
1
20.05
174
6
Итоговая контрольная работа по геометрии.
1
21.05
К/р №5
175
7
Итоговый урок.
1
22.05