Пояснительная записка, геометрия, Атанасян

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка

Программа по предмету «Геометрия» составлена на основе нормативных документов:

  • Закона «Об образовании в Российской федерации» №273 от 29.12.2012 года.

  • Федерального компонента Государственного образовательного стандарта основного общего образования, утвержденного приказом Минобразования России от 15.03.2004 г. №1089 «об утверждении федерального компонента государственных стандартов начального, основного общего и среднего (полного) общего образования»;

  • Основной образовательной программы основного общего образования МАОУ «Саган-Нурская средняя общеобразовательная школа»;

  • Приказа министерства образования и науки РФ от 31 марта 2014 года № 253 «Об утверждении федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего образования»;

  • Устава школы;

  • Положения о рабочей программе;

  • Авторской программы под редакцией Л.С.Атанасяна.

Программа данного учебного курса реализуется на базовом уровне.

Целью изучения курса геометрии 9 класса является систематическое изучение свойств геометрических фигур на плоскости, формирование геометрических представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.п.).

Учащиеся знакомятся с использованием метода координат при решении геометрических задач; развивается умение обучающихся применять тригонометрический аппарат при решении геометрических задач; расширяется знание обучающихся о многоугольниках; рассматриваются понятия длины окружности и площади круга и формулы для их вычисления; знакомятся обучающиеся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений; даётся более глубокое представление о системе аксиом планиметрии и аксиоматическом методе; даётся начальное представление телах и поверхностях в пространстве; знакомятся обучающиеся с основными формулами для вычисления площадей; поверхностей и объемов тел.

Задачи:

- Интеллектуально развивать учащихся. Формировать умения применять полученные знания для решения практических задач, проводить доказательные рассуждения, логически обосновывать выводы для изучения естественнонаучных дисциплин на базовом уровне.

- Формировать представления о математике, как части общечеловеческой культуры.

- Повышать теоретический уровень обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений.

- Применять знания в математике к изучению действительности и решению практических задач.

- воспитывать у учащихся средствами математики толерантное отношение друг к другу;

- воспитать чувство патриотизма;

- воспитать позитивные ценности отношения к окружающей среде;

- воспитать экологическую культуру, ответственное отношение к своему здоровью и здоровью окружающих;

- развить познавательные интересы, интеллектуальных и творческих способностей в процессе математических знаний, наблюдений, решения математических задач, самостоятельного приобретения новых знаний по математике;

- развить ключевые и надпредметные компетенций – готовности учащихся использовать усвоенные знания, умения и способы деятельности в реальной жизни для решения практических задач;

- развить критическое мышление.

- создать комфортный климата в классе (обстановка и гигиенические условия в классе должны соответствовать СанПиНу);

- формировать здоровый образ жизни в процессе учебно-воспитательной работы по предмету;

- содействать благоприятной психологической обстановке в классе;

- применятьздоровьесберегающие технологий в образовательном процессе.


Общая характеристика учебного предмета, курса:

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания. В курсе геометрии 9-го класса продолжается изучение геометрических фигур и их свойств на плоскости, формируется понятие вектора, как направленного отрезка и применение его при решении простейших задач, расширяется и углубляется представление о методе координат и применение его при решении геометрических задач, вводится понятие скалярного произведения векторов, а также изучаются соотношения между сторонами и углами треугольника, длин окружности и площадь круга, вводится понятие «движение».


Данная рабочая программа ориентирована на использование учебно-методического комплекта:

1. Геометрия. 7–9 классы : учеб.дляобщеобразоват. учреждений / Л. С. Атанасян [и др.]. – М. : Просвещение, 2013.

2. Геометрия. 9 класс. Рабочая тетрадь : пособие для учащихся общеобразовательных учреждений / Л. С. Атанасян [и др.]. – М. : Просвещение, 2013.

3. Геометрия. Программы общеобразовательных учреждений. 7–9 классы / сост. Т. А. Бурмистрова. – М. : Просвещение, 2012.

4. Зив, Б. Г. Геометрия : дидактические материалы : 9 кл. / Б. Г. Зив. – М. : Просвещение, 2011.

5. Изучение геометрии в 7–9 классах : метод.рекомендации : кн. для учителя / Л. С. Атанасян [и др.]. – М. : Просвещение, 2011.

6. Блинков, А. Д. Геометрия : тематические тесты : 7 кл. / А. Д. Блинков, Т. М. Мищенко. – М. : Просвещение, 2011.


Согласно действующему учебному плану рабочая программа предусматривает следующий вариант организации процесса обучения:

  • в 9классе предполагается обучение в объеме 70 часов, 2 часа в неделю.

контрольных работ – 6 учебных часов;

самостоятельных работ – 4 учебных часа и 2 учебных часа (индивидуальное обучение);

проектной деятельности – 5 учебных часов и 4 учебных часа (индивидуальное обучение).

Образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихсяна основе приобретения ими компетентностного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентаций и смыслотворчества. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.Учащиеся должны владеть компетенциями:

информационной;

коммуникативной;

математической (прагматической), подразумевающей, что учащиеся умеют использовать математические знания, арифметический, алгебраический аппарат для описания и решения проблем реальной жизни, грамотно выполнять алгоритмические предписания и инструкции на математическом материале, пользоваться математическими формулами, применять приобретенные алгебраические преобразования и функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах;

социально-личностной, подразумевающей, что учащиеся владеют стилем мышления, характерным для математики, его абстрактностью, доказательностью, строгостью, умеют проводить аргументированные рассуждения, делать логически обоснованные выводы, проводить обобщения и открывать закономерности на основе анализа частных примеров, эксперимента, выдвигать гипотезы, ясно и точно выражать свои мысли в устной и письменной речи;

общекультурной, подразумевающей, что учащиеся понимают значимость математики как неотъемлемой части общечеловеческой культуры, воздействующей на иные области культуры, понимают, что формальный математический аппарат создан и развивается с целью расширения возможностей его применения к решению задач, возникающих в теории и практике, умеют уместно использовать математическую символику;

предметно-мировоззренческой, подразумевающей, что учащиеся понимают универсальный характер законов математической логики, применимых во всех областях человеческой деятельности, владеют приемами построения и исследования математических моделей при решении прикладных задач.


Кроме того, для успешной реализации программы целесообразно использовать следующее оборудование: слайд – альбомы, видеофрагменты и видеофильмы, информационные ресурсы, электронные носители. Также для создания благоприятного психологического климата необходим хорошо оснащенный кабинет. Данная программа для усиления самостоятельной деятельности учащихся рекомендует создание для каждого ученика индивидуального маршрута.

Нормы оценки знаний, умений и навыков обучающихся по математике.

 1. Оценка письменных контрольных работ обучающихся по математике.

 Ответ оценивается отметкой «5», если:работа выполнена полностью; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях: работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если: допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если: работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

  Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

  2.Оценка устных ответов обучающихся по математике

 Ответ оценивается отметкой «5», если ученик:полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

 Ответ оценивается отметкой «4», еслиудовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

 Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

 Отметка «1» ставится, если: ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

 3. Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки: незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения; незнание наименований единиц измерения; неумение выделить в ответе главное; неумение применять знания, алгоритмы для решения задач; неумение делать выводы и обобщения; неумение читать и строить графики; неумение пользоваться первоисточниками, учебником и справочниками; потеря корня или сохранение постороннего корня; отбрасывание без объяснений одного из них; равнозначные им ошибки; вычислительные ошибки, если они не являются опиской; логические ошибки.

 3.2. К негрубым ошибкам следует отнести: неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными; неточность графика; нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными); нерациональные методы работы со справочной и другой литературой; неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются: нерациональные приемы вычислений и преобразований; небрежное выполнение записей, чертежей, схем, графиков.


Национально-региональный компонент

Данный фактор является основной причиной большой проблемы определения национально-регионального компонента в Республике Бурятия. Попытки решения данной проблемы конкретно выражаются в увеличении объема знаний на основе введения предметов, отражающих национально-региональные особенности. Вследствие этого возникает диспропорция роста знания и роста возможности их усвоения учащимися. Необходимо отметить, что в данном случае развитие памяти не может определяться развитием уровня познания. Известно, что память измеряется мерой обобщенности знаний (Давыдов В.В. и др.), количеством относительно изолированных логических блоков (Эрдниев П.М.).

Отсутствие целенаправленных действий в процессе обобщения знаний национально-региональной направленности до поры до времени не ощущается как недостаток. Однако сейчас обстоятельства изменились: такое обобщение необходимо в интересах овладения учащимися этими знаниями. Поэтому задача гимназии - систематизация накопленного опыта во всех областях нашей культуры - должна приобрести определенный статус, присущий важнейшим вопросам развития образования нашей республики.

Процесс обобщения и систематизации знаний национально-региональной направленности обладает определенной степенью приближенности, которая должна соответствовать требованиям времени. Такого соответствия в данный момент нет. На наш взгляд, в первую очередь, решение проблемы должно начинаться с создания определения уровня общей картины мира (Бурятия) как системы взаимодействующих, постоянно развивающихся и качественно преобразующихся материальных и духовных реальностей. Говоря об общей картине части мира, мы имеем судьбы единого людского рода и раскрытие их взаимосвязей через путь бурятского народа, понимаемого в широком смысле. Известно, что философия рассматривает версии путей, которыми идет род человеческий. Что есть циклическое движение, линейное и синергетическое.

Думается, что разнообразие подходов к созданию общей картины мира позволит глубже и шире проникнуть в судьбы единого человеческого рода.

Развитие принципа обобщения и систематизации накопленного опыта предлагает, таким образом, постоянное сближение знаний о мире с тем или иным представлением о процессе возникновения общей картины мира.

Необходимо отметить, что система накопленных знаний во всех областях культуры не должна рассматриваться как уже годовая программа для их усвоения. Данную систему можно принять как средство построения такой программы.

В "Программе стабилизации и развития российского образования в переходный период" (март 1991 год) задача регионализации образования была выделена как одна из приоритетных направлений образовательной реформы.

Обновление содержания образования и воспитания предполагает учет национальных, региональных и местных социокультурных особенностей. Восстановление многовековой народной мудрости направлено на развитие духовной и нравственно-эстетической культуры человека. Становятся приоритетными этнопедагогические концепции, проекты, программы.

Содержание образования в школе, включающее этнокультурный компонент, позволяет обеспечивать приобщение учащихся к самобытности народов Байкальского региона и реализуется через учебный план и программу внеклассной воспитательной работы.

Вариативная часть содержания образования представлена модулями, соответствующими образовательным областям с учетом ведущей экспериментальной проблемы школы и национально-регионального компонента.

Включение в учебные предметы национально-регионального компонента направлено на формирование этнокультуроведческой компетенции:

  • владение бурятским языком как "средством познания истории народа, его духа";

  • умение расшифровывать коды родной культуры;

  • знание особенностей природы, хозяйства, общественных отношений;

  • системное знание национальных процессов;

  • самоидентификация с этносом;

  • национальноесамоосознание личности в поликультурном пространстве;

  • толерантность, уважение инокультурных традиций и обычаев.

Принцип региональности, заключающийся в опоре на культурные достижения, национальные традиции, нравственно-ценностные взгляды родного народа является одним из важных принципов в образовании.

 ВКЛЮЧЕНИЕ НАЦИОНАЛЬНО-РЕГИОНАЛЬНОГО КОМПОНЕНТА В СОДЕРЖАНИЕ ОБУЧЕНИЯ МАТЕМАТИКЕ

1. Поверхность гостиницы "Бурятия" имеет форму параллелепипеда. Определить, сколько граней, ребер, вершин имеет поверхность гостиницы. Какое здание в г.Улан-Удэ имеет форму куба? Что такое куб? Из каких фигур состоит поверхность куба?

2. Найти объем здания "Восточные ворота" с измерениями 9,5 м; 38 м; 23 м и выразить в кубических дециметрах.

3. Длина одной стороны парка "Орешково" составляет 3/11 его периметра, длина другой 4/11 периметра, а сумма длин этих сторон равна 280 м. Найти периметр парка.

4. Луноликая НаранГэрэл ткала прекраснейший ковер, используя все цвета мира. Этот ковер должен был обладать чудодейственной силой. Он был разбит на 100 равные красивейшие части. На рисунке закрашенная часть была соткана из чистого изумруда. Найти, величину всего ковра, если НаранГэрэл 12 кв. м. соткала из изумруда?

5. Сколько аров составляет поле села Баянгол Баргузинского района, если оно равно 15 га? Сколько квадратных метров?


Программа является примерной и позволяет учителю самостоятельно распределять материал и время для его повторения и обобщения в зависимости от степени подготовленности учащихся.

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.

МЕТОДИЧЕСКИЙ КОНСТРУКТОР

Современный этап развития общества диктует использование методического конструктора, которое позволяет развитию социально-адаптивной, конкурентно-способной личности умеющей ориентироваться в современном мире.

Учебный элемент в большей степени дает ценностную установку для восприятия содержания всего учебного пособия, включает обучающихся в открытую дискуссию, содействует формированию демократического сознания, ответственного отношения к качеству собственного образования и качеству жизни вообще. Упражнения и задания пособия носят универсальный характер, каждое из них можно использовать в разнообразных методических контекстах.

Требования к уровню подготовки учащихся 9 класса
Должны знать:

следующие понятия: вектор, сумма и разность векторов; произведение вектора на число, скалярное произведение векторов; синус, косинус, тангенс, котангенс; теорема синусов и косинусов; решение треугольников; соотношение между сторонами и углами треугольника;

определение многоугольника; формулы длины окружности и площади круга; свойства вписанной и описанной окружности около правильного многоугольника; понятие движения на плоскости: симметрия, параллельный перенос, поворот.

Должны уметь:

пользоваться геометрическим языком для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

в простейших случаях строить сечения и развертки пространственных тел;

проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0°до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, симметрию;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать простейшие планиметрические задачи в пространстве.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для описания реальных ситуаций на языке геометрии;

для расчетов, включающих простейшие тригонометрические формулы;

при решении геометрических задач с использованием тригонометрии;

для решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

при построении геометрическими инструментами (линейка, угольник, циркуль, транспортир).


Содержание программы.

1. Векторы. Метод координат

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

2. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

3. Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2/г-угольника, если дан правильный га-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

4. Движения

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

5. Об аксиомах геометрии.

Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия, равенства фигур.

6. Начальные сведения из стереометрии.

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

7. Повторение. Решение задач.


Структура курса


Модуль (глава)

Количество часов

1

Вводное повторение.

2

Векторы.

3

Метод координат.

10ч

4

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

11ч

6

Длина окружности и площадь круга.

12ч

7

Движения

8

Начальные сведения из стереометрии.

9

Об аксиомах геометрии.

10

Повторение. Решение задач.

Итого


68ч


Годовой календарный график контрольных работ


урока

Контрольная работа

Количество часов

1

21

Контрольная работа № 1 по теме «Метод координат»

1

2

32

Контрольная работа № 2 по теме «Соотношения между сторонами и углами треугольника»

1

3

44

Контрольная работа № 3 по теме «Длина окружности и площадь круга».

1

4

52

Контрольная работа № 4 по теме «Движения».

1

5

66

Итоговая контрольная работа.

1



Дополнительная литература для учителя:

7. Звавич, Л. И. Контрольные и проверочные работы по геометрии. 7–9 классы / Л. И. Звавич [и др.]. – М., 2001.

8. Зив, Б. Г. Задачи по геометрии : пособие для учащихся 7–11 классов общеобразовательных учреждений / Б. Г. Зив, В. М. Мейлер, А. Г. Баханский. – М. : Просвещение, 2003.

9. Кукарцева, Г. И. Сборник задач по геометрии в рисунках и тестах. 7–9 классы / Г. И. Кукарцева. – М., 1999.

10. Саврасова, С. М. Упражнения по планиметрии на готовых чертежах / С. М. Саврасова, Г. А. Ястребинецкий. – М., 1987.

Дополнительная литература для учащихся:

11. Шуба, М. Ю. Занимательные задания в обучении математике / М. Ю. Шуба. – М., 1997.

12. Энциклопедия для детей : в 15 т. Т. 11. Математика / под ред. М. Д. Аксенова. – М. :Аванта+, 1998.

При работе можно использовать также статьи из научно-теоретического и методического журнала «Математикав школе», из еженедельного учебно-методического приложения к газете «Первое сентября» «Математика».


Информационно-методическое обеспечение учебного процесса

1. Программно-педагогические средства, реализуемые с помощью компьютера.

1. CD «1С: Репетитор. Математика» (КиМ).

2. CD «Уроки геометрии. 7–9 классы» (в 2 ч.) (КиМ).

3. CD «Геометрия не для отличников» (НИИ экономики авиационной промышленности).

4. CD «Математика. 5–11 классы. Практикум».

5. CD «1С: Образовательная коллекция. Планиметрия. 7–9 кл.».

6. CD «Большая электронная детская энциклопедия по математике».

7. CD «Динамическая геометрия. 8 класс».

2. Цифровые образовательные ресурсы (ЦОР) для поддержки подготовки школьников.

1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа : http://www.rusolymp.ru

2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа : http://www.eidos.ru/olymp/mathem/index.htm

3. Информационно-поисковая система «Задачи». – Режим доступа : http://zadachi.mccme.ru/easy

4.Задачи: информационно-поисковая система задач по математике. – Режим доступа : http://zadachi.mccme.ru

5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа : http://mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm

6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа : http://www.mccme.ru/free-books

7. Математика для поступающих в вузы. – Режим доступа : http://www.matematika.agava.ru

8. Выпускные и вступительные экзамены по математике : варианты, методика. – Режим доступа : http://www.mathnet.spb.ru

9. Олимпиадные задачи по математике : база данных. – Режим доступа : http://zaba.ru

10. Московские математические олимпиады. – Режим доступа : http://www.mccme.ru/olympiads/mmo

11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа : http://aimakarov.chat.ru/school/school.html

12. Виртуальная школа юного математика. – Режим доступа : http://math.ournet.md/indexr.htm

13. Библиотека электронных учебных пособий по математике. – Режим доступа : http://mschool.kubsu.ru

14. Образовательный портал «Мир алгебры». – Режим доступа : http://www.algmir.org/index.html

15. Словари БСЭ различных авторов. – Режим доступа : http://slovari.yandex.ru

16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа : http://www.etudes.ru

17. Заочная физико-математическая школа. – Режим доступа : http://ido.tsu.ru/schools/physmat/index.php

18. Министерство образования РФ. – Режим доступа : http://www.ed.gov.ru; http://www.edu.ru

19. Тестирование on-line. 5–11 классы. – Режим доступа : http://www.kokch.kts.ru/cdo

20. Архив учебных программ информационного образовательного портала «RusEdu!». – Режим доступа : http://www.rusedu.ru

21. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа : http://mega.km.ru

22. Сайты энциклопедий. – Режим доступа : http://www.rubricon.ru; http://www.encyclopedia.ru

23. Вся элементарная математика. – Режим доступа : http://www.bymath.net

24. ЕГЭ по математике. – Режим доступа : http://uztest.ru