Учитель математики: Кожахметова Клара Есмаганбетовна
Открытый урок по алгебре
в 9 классе по теме:
« Системы нелинейных неравенств с одной и двумя переменными. Доказательство неравенств»
Тип урока: Обобщение изученного материала.
Цель урока.1. Отработка способов решения систем нелинейных неравенств с одной переменной, с двумя переменными, доказательство неравенств ; формирование навыков решения систем неравенств и доказательство неравенств;
2. развитие логического мышления , памяти, внимания, развитие общеучебных умений, умения сравнивать, обобщать;
3. воспитание трудолюбия, взаимопомощи, математической культуры, умение слушать и слышать других, умение вести диалог.
Ход урока.
Здравствуйте, ребята! Нам сегодня предстоит поработать над очень важной темой: «Решение нелинейных систем неравенств с одной и двумя переменными, доказательство неравенств». Вы уже достаточно знаете и умеете по этой теме, поэтому наша с вами задача: Обобщить и сложить в систему все те знания, которыми вы владеете.
Чтобы у нас царила атмосфера доброжелательности, предлагаю начать урок с таких слов:
В класс вошел- не хмурь лица,
Будь разумным до конца.
Ты не зритель и не гость-
Ты программы нашей гвоздь,
Не ломайся, не смущайся
Всем законам подчиняйся.
А законы у нас будут такие: каждый из вас имеет возможность получить оценку за урок по результатам работы на различных этапах. Для этого у вас лежат на партах карты результативности, в которых вы будете фиксировать свои успехи в баллах. И еще один не обсуждаемый закон: для ответа на поставленный вопрос вы поднимаете руку и ни в коем случае не перебиваете друг друга. Желаю вам успехов!
Карта результативности.
Приступим к работе. Для того, чтобы включиться в работу и сконцентрироваться предлагаю вам небольшую устную разминку. Но вопросы будут не только по теме урока, проверим ваше внимание и умение переключаться. За каждое правильный ответ вы по моему указанию ставите балл.
Разминка.
Верно ли утверждение: 1. Если к обеим частям неравенства прибавить( отнять) одно и то же число( выражение) , то получится верное неравенство? ( да)
2. Если из одной части неравенства в другую перенести слагаемое с противоположным знаком, то получится верное неравенство?(Да)
3. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное неравенство? (да)
4. Если обе части неравенства умножить или разделить на одно и то же отрицательное число, то получится равносильное неравенство? (нет)
5. Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный ,то получится равносильное ему неравенство? (да)
6. Равенство с переменной называется? ( уравнение)
7. Есть у любого слова, у растения и может быть и у уравнения. ( корень)
8. Какое название имеет неравенство второй степени? ( квадратное)
9. От чего зависит направление ветвей параболы при решении неравенства? ( от коэффициента при х²)
10. Приведите примеры приведенного квадратного неравенства.
11. Что значит решить неравенство?
12. Что обычно понимают под доказательством неравенства?
( Прошу открыть тетради, записать число и тему нашего урока: « Системы нелинейных неравенств с одной, двумя переменными. Доказательство неравенств»)
Предлагаю эпиграфом нашего урока взять прекрасные строки Блеза Паскаля:
Величие человека-
В его способности мыслить.
( Работа в парах) Проверим, насколько хорошо вы умеете решать неравенства. Вашему вниманию предлагаю тест, в котором 4 задания.
Первый вариант:
1.На каком рисунке изображено решение системы неравенств
А)
В)
С)
Д)
Ответ:
2. Найдите наибольшее целое решение системы неравенств:
А)1
В)2
С)3
Д)0
Ответ:
3. Найти наименьшее целое решение системы неравенств:
А)-4
В)-3
С)-5
Д)0
Ответ:
4. Какое натуральное число является решение системы неравенств:
А) 1
В)2
С)3
Д)4
Ответ:
Второй вариант.
1.На каком рисунке изображено решение системы неравенств
А)
В)
С)
Д)
Ответ:
2. Найдите наибольшее целое решение системы неравенств:
А)6
В)5
С)4
Д)0
Ответ:
3. Найти наименьшее целое решение системы неравенств:
А)-10
В)-6
С)1
Д)6
Ответ:
4. Какое натуральное число является решение системы неравенств:
А) 5
В)6
С)1
Д)4
Ответ:
Ключ к тесту: 1 вариант. 1-Д ; 2-В; 3-А; 4-Д.
2 вариант. 1-с; 2-В; 3-А; 4-В.
Учащиеся меняются карточками и проверяют ответы, выставляется число баллов, за каждый правильный ответ -1 балл.
Работа в группах: раздаются смайлики, класс делится на группы.
К доске вызываются капитаны команд, им дается задание: Дать геометрическую иллюстрацию решения неравенства с двумя переменными.
А) 1 команда: х²+у² В) 2 команда х²+у²
( Пока капитаны команд готовятся у доски, работа с классом)
Найдите любые два решения данного неравенства:
А) 2х²+у В) у
2. Какая из пары чисел А(1;0) ; В(3;3); С(-1;0); Д( 5;1) является решением неравенства
А) у В) у
3. Показать штриховкой на координатной плоскости множество точек, заданное системой неравенств:
А) В)
4. Является ли решением системы неравенств пара значений переменных (х;у)
А) х=5; у=2 В) х=-3; у= 1
( задания А- первой каманде, В- второй команде)
Пока команды отвечают на заданные вопросы, дается задание на скорость капитанам команд : Записать систему неравенств, которая задается множеством точек, показанных на рисунке :
Самостоятельная работа : Доказать неравенство: ( каждому ученику доказать одно неравенство)
4 ( а+1) +а -5( 7+а)
(а-3)²- а( а-3)
2х²+4х +у²+2ху+7
х²+10у²+6ху+2у+4
+х
-
(х+у)²
Игра: « Лови Ошибку». В данных неравенствах допущены ошибки. Найдите их.
А) 3х²-7х+4 (-
В) 2х²+5х-7 (-3,5;
С) 2х²-х-6 (-1,5; 2)
Итак, мы сегодня проделали большую работу. Повторили решение нелинейных систем неравенств с одной и двумя переменными и доказательство неравенств. Прорешали различные их виды вместе, самостоятельно. А сейчас подведем итоги , подсчитаем количество набранных вами баллов, заработанных за урок.
Оценки. Домашнее задание.
Спасибо за урок!!! Вы поработали замечательно.