Рабочая программа по геометрии по учебнику Атанасяна(ФГОС)

Автор публикации:

Дата публикации:

Краткое описание: ...


Муниципальное общеобразовательное бюджетное учреждение

" Новочеркасская средняя общеобразовательная школа"


РАССМОТРЕНО УТВЕРЖДАЮ

на заседании Директор школы:

педагогического совета

протокол №__ _____________Икрянников А.Н

от"___" __________

20____г





РАБОЧАЯ ПРОГРАММА

ГЕОМЕТРИЯ

7-9 классы





Разработана

учителем математики,1 категории

Булдаковой Л.П













с.Новочеркасск

2015г




ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


2.1 Рабочая программа составлена на основе:


  1. Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»

  2. Федеральный государственный образовательный стандарт основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;

  3. Примерная программа по учебным предметам по математике 5-9. М.: Просвещение, 2009;

  4. Авторская программа Атанасян Л.С " Геометрия 7-9кл"

  5. Примерная образовательная программа образовательного учреждения.

  6. Федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях.

  7. Учебного плана школы

2.2 Цели обучения с учетом специфики учебного предмета.


Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относиться к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием и аналогией. Активное использование творческих задач на всех этапах учебного процесса развивает творческие способности школьников.

При изучении геометрии формируются умения и навыки умственного труда – планирование своей работы, поиск рациональных путей ее выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, приобрести навыки четного, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармония математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительных вклад в эстетическое воспитание учащихся


2.3. Конкретизация целей обучения с учетом ОУ

На данной ступени образования, для учащихся 7-9 классов, этот предмет является основой развития у обучающихся познавательных и коммуникативных действий, в первую очередь логических и абстрактных, поэтому особое внимание уделить психолого-педагогическим особенностям детей.

Цель: получение новых знаний через использование различных методов и технологий.

2.4. Задачи обучения:

  • приобретение геометрических знаний и умений;

  • овладение обобщенными способами мыслительной, творческой деятельности;

  • освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно-смысловой);

  • построение образовательного процесса с учетом индивидуальных возрастных, психологических и физиологических особенностей обучающихся.

    • Общая характеристика курса

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин.

В курсе геометрии условно можно выделить следующие содержательно-методические линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии), способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающей мира. Систематическое изучение свойств геометрических фигур позволит развить логического мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач.

Материал, относящийся к содержательным линиям «Координаты», и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.


2.6 Общая характеристика учебного процесса:

Успешное осуществление педагогической деятельности современным учителем математики невозможно без применения эффективных педагогических технологий обучения и воспитания. Использование педагогических технологий позволяет рационально выстраивать процесс обучения, чтобы не возникало одной из важнейших проблем математического образования - проблемы ненасильственного обучения математике.

Мотивированное изучение математики возможно лишь тогда, когда у обучаемого удается сформировать интерес к предмету, его понятиям, идеям, методам. А для этого необходимо, чтобы ученики имели более широкое представление о роли математики в различных сферах жизнедеятельности человека.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Для реализации данной программы используются педагогические технологии:

  1. технология коммуникативного обучения;

  2. технология личностно-ориентированного обучения;

  3. технология проблемного обучения;

  4. информационно-коммуникационная технология;

  5. здоровьесберегающих технологии.

Здоровьесберегающих технологии, применяемые в процессе обучения:

  1. зарядка для глаз;

  2. смена видов деятельности;

  3. эмоциональная разрядка;

  4. построение урока в соответствии с динамикой внимания, учитывая время каждого задания.

Формы работы: фронтальная работа; индивидуальная работа; коллективная работа; парная работа; групповая работа.

Методы работы: рассказ; объяснение, лекция, беседа, применение наглядных пособий; дифференцированные задания, самостоятельная работа; взаимопроверка, самопроверка дидактическая игра; решение проблемно-поисковых задач.

Основная форма обучения - урок

В системе уроков выделяются следующие виды:

Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.

Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, практическое применение различных методов решения задач, интерактивные уроки. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.

Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.

Комбинированный урок предполагает выполнение работ и заданий разного вида.

Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.

Урок решения задач. Вырабатываются у обучающихся умения и навыки решения задач на уровне базовой и продвинутой подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.

Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности обучающихся, тренировки технике тестирования. Тесты предлагаются как в печатном, так и в электронном варианте. Причем в компьютерном варианте всегда с ограничением времени.

Урок-зачет. Устный и письменный опрос обучающихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Урок - самостоятельная работа.  Предлагаются разные виды самостоятельных работ.

Урок - контрольная работа. Проводится на двух уровнях: уровень базовый (обязательной подготовки) - «3», уровень продвинутый - «4» и «5».

Наряду с традиционными формами уроков, используются и нестандартные уроки-КВНы, уроки-диспуты, уроки-лекции, уроки-экскурсии, уроки-конференции, доклады, рефераты, проекты и т.д., при этом применяются объяснительно-иллюстративный метод, проектный метод, исследовательский метод, информационно-комуникативный метод, эвристический метод и другие.

Используются следующие формы и методы контроля усвоения материала: устный контроль (индивидуальный опрос, устная проверка знаний); письменный контроль (контрольные работы, графические диктанты, тесты), проверка домашнего задания.

Учебный процесс осуществляется в классно-урочной форме в виде комбинированных, контрольно-проверочных типов уроков.

В реализации данной программы используются следующие средства:

  • Учебно-наглядные пособия;

  • Компьютерный класс;

  • Модели;

  • Таблицы;

  • Организационно-педагогические средства (учебные планы, КИМы, карточки-задания, учебные пособия ).

Контроль за уровнем сформированности познавательных УУД представляет проведение самостоятельных, контрольных работ, как в традиционной, так и в тестовой и зачетной формах. Преобладающей формой текущего контроля выступает письменный (самостоятельные и контрольные работы) и устный опрос (собеседование).

Педагогические технологии, используемые учителем :

  • игровые технологии

  • технология проблемного обучения

  • технологии уровневой дифференциации

  • здоровье-сберегающие технологии

  • технология развития критического мышления

  • ИКТ.

Формы организации учебного процесса:

На уроках используются такие формы занятий как: индивидуальные, групповые, индивидуально-групповые, фронтальные

Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 45 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием.

Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:

  • в конце учебной четверти

в конце учебного года.

2.7 Обоснование выбора УМК, на основании которого ведется преподавание предмета:

Данная рабочая программа рассчитана на общеобразовательный класс. Обучение математике осуществляю по УМК под редакцией Л.С. Атанасяна. Выбор данного УМК определен следующими положениями:

  • Наличие разнообразного теоретического материала и упражнений для базового уровня и задания повышенной сложности.

  • Соответствие требованиям итоговой аттестации.

  • Общекультурная направленность. Перенос акцентов с формального на содержательное, развитие понятий и утверждений на наглядно-интуитивной основе.

  • Широкие возможности для уровневой дифференциации в учебном процессе. Реализация этого принципа в значительной степени облегчается за счет рабочей тетради. В ходе выполнения включенных в нее заданий учащиеся выполняют разнообразную практическую деятельность, которая составляет материальную основу формируемых УУД.

Учебно-методические комплекты:

1. Учебник. Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2014.

2. Рабочая тетрадь по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Ю.А. Глазков, П.М. Камаев. – М.: Издательство «Экзамен», 2014

3. Контрольные работы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова. – М.: Издательство «Экзамен», 2014

4. Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2014

5. Дидактические материалы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова, Г.А. Захарова. – М.: Издательство «Экзамен», 2014

УМК рекомендован Министерством образования и науки Российской федерации, соответствует государственному стандарту и является оптимальным комплектом, наиболее полно обеспечивающим реализацию основных содержательно-методических линий математики базовой школы.


    1. Место курса в учебном плане

Базисный учебный (образовательный план) на изучение геометрии в 7-9 классах основной школе отводит 204 часа. Геометрия изучается в 7 классе– 2 ч в неделю, всего 68 ч; 8 класс - 2 ч в неделю, всего 68 ч; 9 класс - 2 ч в неделю, всего 68 ч.

2.10 Результаты освоения предмета геометрии

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:


  • формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

  • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  • умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  • формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  • умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений

  • овладение навыками устных письменных, инструментальных вычислений;

  • овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  • усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;

  • умение измерять длины отрезков, величины углов;

  • умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства


3. Содержание курса

Начальные геометрические сведения. Прямая и отрезок. Точка, прямая, отрезок. Луч и угол. Сравнение отрезков и углов. Равенство геометрических фигур. Измерение отрезков и углов. Длина отрезка. Градусная мера угла. Единицы измерения. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Перпендикулярные прямые.

Треугольники. Треугольник. Высота, медиана, биссектриса треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Окружность. Дуга, хорда, радиус, диаметр. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равному данному; построение биссектрисы угла; построение перпендикулярных прямых.

Параллельные прямые. Параллельные и пересекающиеся прямые. Теоремы о параллельности прямых. Определение. Аксиомы и теоремы. Доказательство от противного. Теорема, обратная данной.

Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Виды треугольников. Теорема о соотношениях между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники; свойства и признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построения с помощью циркуля и линейки. Построение треугольника по трем элементам.

Четырехугольники. Многоугольники. Выпуклые многоугольники. Периметр многоугольника. Сумма углов выпуклого многоугольника. Параллелограмм и трапеция. Прямоугольник. Ромб. Квадрат. Свойства четырехугольников. Осевая и центральная симметрии, как свойства некоторые геометрических фигур.

Площадь. Площадь многоугольника. Площади параллелограмма, треугольника и трапеции. Теорема Пифагора.

Подобные треугольники. Определение подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника.

Окружность. Касательная к окружности, ее свойства и признак. Взаимное расположение прямой к окружности. Свойства отрезков касательных, проведенных из одной точки. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружность.

Векторы. Понятие вектора. Длина вектора. Коллинеарные и равные вектора. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов при решении задач. Средняя линия трапеции.

Метод координат. Координаты вектора. Правила действий над векторами с заданными координатами. Простейшие задачи в координатах. Уравнения окружности и прямой.

Соотношения между сторонами и углами треугольника. Синус, косинус, тангенс угла. Формулы для вычисления координат точки. Соотношения между сторонами и углами треугольника. Теорема о площади треугольника. Теорема синусов. Теорема косинусов. Методы решения треугольников. Скалярное произведение векторов.

Длина окружности и площадь круга. Правильные многоугольники. Теоремы об окружностях описанной около правильного многоугольника и вписанной в него. Формулы, связывающие площадь и сторону правильного многоугольника с радиусами вписанной и описанной окружностей. Задачи на построение правильных многоугольников. Длина окружности и площадь круга и кругового сектора.

Движения. Понятие движения, некоторые свойства движений. Осевая и центральная симметрия. Параллельный перенос и поворот.

Начальные сведения из стереометрии. Понятие геометрического тела, поверхности, границы тела, секущей плоскости и сечения тела. Многогранники: призма, параллелепипед, пирамида; их свойства. Основные свойства объемов, принцип Кавальери. Тела и поверхности вращения. Формулы для вычисления площади поверхности и объемов тел вращения.

  1. Примерное тематическое планирование

7 класс


8 класс.


9 класс



5. Планируемые результаты изучения курса

В результате изучения курса геометрии 7-9 классов выпускник научится и получит возможность

Наглядная геометрия

  • Выпускник научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

  • распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  • строить развёртки куба и прямоугольного параллелепипеда;

  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  • вычислять объём прямоугольного параллелепипеда.

  • Выпускник получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах;

  • научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

  • оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  • решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  • решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

  • овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  • приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

  • овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  • научиться решать задачи на построение методом геометрического места точек и методом подобия;

  • приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  • приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  • вычислять площади треугольников, прямоугольников, параллелограмм-мов, трапеций, кругов и секторов;

  • вычислять длину окружности, длину дуги окружности;

  • вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

  • решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

  • вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

  • вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

  • применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

  • вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

  • использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

  • овладеть координатным методом решения задач на вычисления и доказательства;

  • приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

  • приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

  • оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

  • находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

  • вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

  • овладеть векторным методом для решения задач на вычисления и доказательства;

  • приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».


6. Учебно-методическое и материально-техническое обеспечение образовательного процесса

Учебно-методический комплект Л.С. Атанасян и коллектив авторов

Таблица 6

2

Рабочая тетрадь по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Ю.А. Глазков, П.М. Камаев. – М.: Издательство «Экзамен», 2014

3

Контрольные работы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова. – М.: Издательство «Экзамен», 2014

4

Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2014

5

Дидактические материалы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова, Г.А. Захарова. – М.: Издательство «Экзамен», 2014


Дополнительная литература

Таблица 7

3

Геометрия. 7 класс. Самостоятельные работ. Тематические тесты. Тесты для промежуточной аттестации. Справочник. Рабочая тетрадь / Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Издательство «Легион», 2013

4

Геометрия. 7 класс. Контрольные измерительные материалы / Д.Г. Мухин, А.Р. Рязановский. – М.: Издательство «Экзамен», 2014

5

Методический журнал для учителей математики «Математика», ИД «Первое сентября»


Материально-техническое обеспечение

Таблица 8

3.

CD - Диск «Уроки геометрии Кирилла и Мефодия»

4.

CD - Диск «Геометрия 7 класс» / Издательство «1С», серия: «Школа»

Информационные источники

5.

http://urokimatematiki.ru

6.

http://intergu.ru/

7.

http://karmanform.ucoz.ru

8.

http://polyakova.ucoz.ru/

9.

http://le-savchen.ucoz.ru/

10.

http://www.it-n.ru/

11.

http://www.openclass.ru/

12.

http://festival.1september.ru/

Учебно-лабораторное оборудование

13.

Мультимедийный компьютер

14

Мультимедиапроектор

15.

Интерактивная доска

16.

Аудиторная доска с магнитной поверхностью и набором приспособлений для крепления таблиц

17.

Комплект инструментов классных: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль


7. Критерии и нормы оценки знаний, умений и навыков учащихся


1. При выполнении практической работы и контрольной работы:

Содержание и объем материала, подлежащего проверке в контрольной работе, определяется программой. При проверке усвоения материала выявляется полнота, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.

Отметка зависит также от наличия и характера погрешностей, допущенных учащимися.

  • грубая ошибка – полностью искажено смысловое значение понятия, определения;

  • погрешность отражает неточные формулировки, свидетельствующие о нечетком

  • представлении рассматриваемого объекта;

  • недочет – неправильное представление об объекте, не влияющего кардинально на

  • знания определенные программой обучения;

  • мелкие погрешности – неточности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т.п.

Исходя из норм (пятибалльной системы), заложенных во всех предметных областях выставляете отметка:

  • «5» ставится при выполнении всех заданий полностью или при наличии 1-2 мелких погрешностей;

  • «4» ставится при наличии 1-2 недочетов или одной ошибки;

  • «3» ставится при выполнении 2/3 от объема предложенных заданий;

  • «2» ставится, если допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями поданной теме в полной мере (незнание основного программного материала);

  • «1» ставится, если работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно; выполнено менее 1/3 части работы.

2. Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой;

  • изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию математики как учебной дисциплины;

  • правильно выполнил рисунки, схемы, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов,

  • сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4, если ответ удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • допущены один-два недочета при освещении основного содержания ответа, исправленные

  • по замечанию учителя:

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или

  • в выкладках, легко исправленные по замечанию учителя.


Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее

  • понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения

  • программного материала определенные настоящей программой.


Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или неполное понимание учеником большей или наиболее важной

  • части учебного материала;

  • допущены ошибки в определении понятий, при использовании специальной терминологии,

  • в рисунках, схемах, в выкладках, которые не исправлены после нескольких наводящих

  • вопросов учителя.

Отметка «1» ставится в следующих случаях:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала;

  • не смог ответить ни на один из поставленных вопросов по изучаемому материалу;

  • отказался отвечать на вопросы учителя.


Тематика исследовательских и проектных работ:

  • История возникновения планиметрии, основные фигуры, аксиоматика, терминология

  • Мир треугольников

  • Как доказать истину в геометрии?

  • Краткая история возникновения и развития геометрии

  • Что такое признаки, кто ввел, как использовались прямоугольные треугольники в древности, связь признаков

  • Геометрия и искусство

  • Геометрия прикладного характера

  • Геометрия в нашей жизни

  • Простое доказательство не простой теоремы

  • Великие жизни в геометрии