Пояснительная записка
Данная программа разработана на основе:
Федерального государственного образовательного стандарта основного общего образования ( приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897)
Примерной программы по учебным предметам «Математика 5 – 9 класс: проект» – М.: Просвещение, 2011 г
Программы по геометрии для7–9 классов общеобразовательных школ
к учебнику Л.С. Атанасяна и др. (М.: Просвещение, 2013).
Цели обучения
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В результате освоения курса геометрии 7 класса учащиеся получают представление об основных фигурах на плоскости и их свойствах; приобретают навыки геометрических построений, необходимые для выполнения часто встречающихся графических работ, а также навыки измерения и вычисления длин, углов, применяемые для решения разнообразных геометрических и практических задач.
Место предмета в учебном плане
Согласно Федеральному базисному учебному плану на изучение геометрии в 8 классе отводится 70 часов в год (2часа в неделю).
Результаты освоения учебного предмета
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
• формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
• формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
• формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
• умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
• критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
• креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
• умение контролировать процесс и результат учебной математической деятельности;
• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
• умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
• умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
• умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
• понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
• умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
• умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
• осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
• умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
• умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
• формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
• формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
• умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
• умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
• умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
• умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
• умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
• умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
• умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
• слушать партнера;
• формулировать, аргументировать и отстаивать свое мнение;
предметные:
Предметным результатом изучения курса является сформированность следующих умений:
• пользоваться геометрическим языком для описания предметов окружающего мира;
• распознавать геометрические фигуры, различать их взаимное расположение;
• изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;
• распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
• в простейших случаях строить сечения и развертки пространственных тел;
• проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
• вычислять значения геометрических величин(длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
• решать геометрические задачи, опираясь на изученные свойства фигур и отношений
между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;
• проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
• решать простейшие планиметрические задачи в пространстве.
Использовать приобретенные знания и умения в практической деятельности
и повседневной жизни для:
• описания реальных ситуаций на языке геометрии;
• расчетов, включающих простейшие тригонометрические формулы;
• решения геометрических задач с использованием тригонометрии;
• решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
• построений с помощью геометрических инструментов (линейка, угольник, циркуль,
транспортир).
Содержание учебного предмета
Четырехугольники. Многоугольник, выпуклый многоугольник, четырехугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральна симметрия.
Площадь. Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Подобные треугольники. Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Окружность. Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральный, вписанный углы; величина вписанного угла; двух окружностей; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Тематическое планирование с определением основных видов учебной деятельности обучающихся
§
Содержание материала
Кол-во
час
Характеристика основных видов деятельности ученика (на уровне учебных действий)
Повторение курса геометрии 7 класса
2
Глава V. Четырехугольники (14ч)
1
Многоугольники
2
Объясняют, какая фигура называется многоугольником, называют его элементы; знакомятся с понятиями периметра многоугольника, выпуклого многоугольника; выводят формулу суммы углов выпуклого многоугольника, находят углы многоугольников, их периметры.
Знакомятся с опр-ями параллелограмма и трапеции, видами трапеций, формулировками свойств и признаков параллелограмма и равнобедренной трапеции, учатся их доказывать и применять при решении задач. Выполняют деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции Решают задачи на постр четырехугольников
Знакомятся с частными видами параллелограмма: прямоугольником, ромбом и квадратом, с формулировками их свойств и признаков. Доказывают изученные теоремы и применяют их при решении задач типа 401 – 415.
Усваивают определения симметричных точек и фигур относительно прямой и точки.
Строят симметричные точки и распознают фигуры, обладающие осевой симметрией и центральной симметрией.
2
Параллелограмм и трапеция
6
3
Прямоугольник. Ромб. Квадрат
4
4
Решение задач
1
Контрольная работа №1
1
Глава VI. Площадь (14 ч)
1
Площадь многоугольника
2
Усваивают основные свойства площадей и формулу для вычисления площади прямоугольника. Выводят формулу для вычисления
площади прямоугольника и используют ее при решении задач типа 447 – 454, 457.
Заучивают формулы для вычисления площадей параллелограмма,
треугольника и трапеции; доказывают их, а также учат теорему об отношении площадей треугольников, имеющих по равному углу. Применяют все изученные формулы при решении задач типа 459 – 464, 468 – 472, 474.
В устной форме доказывают теоремы и излагают необходимый теоретический материал.
Усваивают теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Доказывают теоремы и применяют их при решении задач типа 483 – 499 (находят неизвестную величину в прямоугольном треугольнике).
2
Площади параллелограмма, треугольника и трапеции
6
3
Теорема Пифагора
3
Решение задач
2
Контрольная работа №2
1
Глава VII. Подобные треугольники (20 ч)
1
Определение подобных треугольников
2
Знакомятся с определениями пропорциональных отрезков и подобных треугольников, теоремой об отношении подобных треугольников
и свойством биссектрисы треугольника (задача535). Определяют подобные треугольники, находят неизвестные величины из пропорциональных отношений, применять теорию при решении задач типа 535 – 538, 541.
Формируют признаки подобия треугольников, определение пропорциональных отрезков. Доказывают признаки подобия и применяют их при р/з550 – 555, 559 – 562
Применяют все изученные теоремы при решении задач.
Формулируют теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике. Доказывают эти теоремы и применять при решении задач типа 567, 568, 570, 572 – 577. С помощью циркуля и линейки делят отрезок в данном отношении и решают задачи на построение типа 586 – 590.
Формулируют определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения. Доказывают основное тригонометрическое тождество, решают задачи типа 591 – 602.
Применяют все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач
2
Признаки подобия треугольников
5
Контрольная работа №3
1
3
Применение подобия к
доказательству теорем и решению задач
7
4
Соотношения между сторонами
и углами прямоугольного треугольника
Решение задач
3
1
Контрольная работа №4
1
Глава VIII. Окружность (16 ч)
1
Касательная к окружности
3
Знакомятся с возможными случаями взаимного расположения прямой и окружности, с определением касательной, свойством и признаком касательной. Доказывают их и применяют при решении задач типа 631, 633 – 636, 638 – 643, 648, выполнять задачи на построение
Распознают, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности. Формулируют теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд. Доказывают эти теоремы и применяют при решении задач типа 651 – 657, 659, 666
Определяют, какая окружность является вписанной в многоугольник и какая описанной около многоугольника, формулируют теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников. Доказывают эти теоремы и применяют их при решении задач типа 689 – 696, 701 – 711.
2
Центральные и вписанные углы
4
3
Четыре замечательные точки
треугольника
3
4
Вписанная и описанная окружности
4
Решение задач
1
Контрольная работа № 5
1
Повторение
4
Применяют все изученные теоремы при решении задач.
ИТОГО
70
Описание учебно-методического и материально-технического обеспечения образовательного процесса
Учебно-методические пособия.
Для учителя:
Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других .7- 9 классы: пособие для учителей общеобразов. учреждений / В.Ф. Бутусов.- Москва, «Просвещение», 2013г.
Гаврилова Н.Ф. Универсальные поурочные разработки по геометрии: 8 класс.- М.: ВАКО, 2010г.
Изучение геометрии в 7,8,9 классах: Метод. Рекомендации к учеб.: Кн. Для учителя/ Л.С.Атанасян, В.Ф. Бутузов, Ю.А.Глазков и др - М.: Просвещение, 2009г.
Для учащихся:
Геометрия 7 – 9 классы: учебник для общеобразовательных учреждений (Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев и другие). Москва: Просвещение, 2014г.
Дополнительная литература для учителя:
Геометрия. 8 класс. 120 диагностических вариантов/ Панарина В.И..: Национальное гбразование, 2012г.
Ершова А.П., Голобородько В.В., Ершова А.С.Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса.— М: Илекса, 2005г.
Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.
Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
Мищенко Т.М. Тематические тесты по геометрии: 8-й кл.: к учебнику Л.С. Атанасяна и др. «Геометрия. 7-9тклассы».- М.: Экзамен,2008г.
Дополнительная литература для учащихся:
Геометрия в таблицах. 7—11 кл.: справочное пособие / авт.-сост. Л. И. Звавич, А. Р. Рязановский. — М.: Дрофа, 2005г.
Маслова Т.Н., Суходский А.М. Справочник школьника по математике. 5—11 классы. М.: Оникс, Мир Образования, 2008г.
Технические средства.
Компьютер, мультимедийный проектор, экран проекционный, принтер, DVD.
Интернет-ресурсы, которые могут быть использованы учителем и учащимися для подготовки уроков, сообщений, докладов и рефератов: