Календарно- тематическое планирование Геометрия 8 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка

Данная программа разработана на основе:

  • Федерального государственного образовательного стандарта основного общего образования ( приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897)

  • Примерной программы по учебным предметам «Математика 5 – 9 класс: проект» – М.: Просвещение, 2011 г

  • Программы по геометрии для7–9 классов общеобразовательных школ

к учебнику Л.С. Атанасяна и др. (М.: Просвещение, 2013).


Цели обучения

Обучение математике в основной школе направлено на достижение следующих целей:

1. В направлении личностного развития:

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей.

2. В метапредметном направлении:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

3. В предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.






Общая характеристика учебного предмета


Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В результате освоения курса геометрии 7 класса учащиеся получают представление об основных фигурах на плоскости и их свойствах; приобретают навыки геометрических построений, необходимые для выполнения часто встречающихся графических работ, а также навыки измерения и вычисления длин, углов, применяемые для решения разнообразных геометрических и практических задач.


Место предмета в учебном плане


Согласно Федеральному базисному учебному плану на изучение геометрии в 8 классе отводится 70 часов в год (2часа в неделю).



Результаты освоения учебного предмета

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:

личностные:

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


метапредметные:

регулятивные универсальные учебные действия:

умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

познавательные универсальные учебные действия:

осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

коммуникативные универсальные учебные действия:

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;

умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

слушать партнера;

формулировать, аргументировать и отстаивать свое мнение;


предметные:


Предметным результатом изучения курса является сформированность следующих умений:


пользоваться геометрическим языком для описания предметов окружающего мира;


распознавать геометрические фигуры, различать их взаимное расположение;


изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;


распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;


в простейших случаях строить сечения и развертки пространственных тел;


проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;


вычислять значения геометрических величин(длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;


решать геометрические задачи, опираясь на изученные свойства фигур и отношений

между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;


проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;


решать простейшие планиметрические задачи в пространстве.




Использовать приобретенные знания и умения в практической деятельности

и повседневной жизни для:


описания реальных ситуаций на языке геометрии;


расчетов, включающих простейшие тригонометрические формулы;

решения геометрических задач с использованием тригонометрии;


решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);


построений с помощью геометрических инструментов (линейка, угольник, циркуль,

транспортир).


Содержание учебного предмета

Четырехугольники. Многоугольник, выпуклый многоугольник, четырехугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральна симметрия.


Площадь. Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.


Подобные треугольники. Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.


Окружность. Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральный, вписанный углы; величина вписанного угла; двух окружностей; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.



Тематическое планирование с определением основных видов учебной деятельности обучающихся



§

Содержание материала

Кол-во

час

Характеристика основных видов деятельности ученика (на уровне учебных действий)


Повторение курса геометрии 7 класса

2


Глава V. Четырехугольники (14ч)


1


Многоугольники

2








Объясняют, какая фигура называется многоугольником, называют его элементы; знакомятся с понятиями периметра многоугольника, выпуклого многоугольника; выводят формулу суммы углов выпуклого многоугольника, находят углы многоугольников, их периметры.

Знакомятся с опр-ями параллелограмма и трапеции, видами трапеций, формулировками свойств и признаков параллелограмма и равнобедренной трапеции, учатся их доказывать и применять при решении задач. Выполняют деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции Решают задачи на постр четырехугольников

Знакомятся с частными видами параллелограмма: прямоугольником, ромбом и квадратом, с формулировками их свойств и признаков. Доказывают изученные теоремы и применяют их при решении задач типа 401 – 415.

Усваивают определения симметричных точек и фигур относительно прямой и точки.

Строят симметричные точки и распознают фигуры, обладающие осевой симметрией и центральной симметрией.

2

Параллелограмм и трапеция

6











3

Прямоугольник. Ромб. Квадрат

4








4


Решение задач

1


Контрольная работа №1

1

Глава VI. Площадь (14 ч)


1


Площадь многоугольника

2





Усваивают основные свойства площадей и формулу для вычисления площади прямоугольника. Выводят формулу для вычисления

площади прямоугольника и используют ее при решении задач типа 447 – 454, 457.


Заучивают формулы для вычисления площадей параллелограмма,

треугольника и трапеции; доказывают их, а также учат теорему об отношении площадей треугольников, имеющих по равному углу. Применяют все изученные формулы при решении задач типа 459 – 464, 468 – 472, 474.

В устной форме доказывают теоремы и излагают необходимый теоретический материал.


Усваивают теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Доказывают теоремы и применяют их при решении задач типа 483 – 499 (находят неизвестную величину в прямоугольном треугольнике).


2

Площади параллелограмма, треугольника и трапеции

6












3

Теорема Пифагора

3



Решение задач


2





Контрольная работа №2

1


Глава VII. Подобные треугольники (20 ч)


1

Определение подобных треугольников

2








Знакомятся с определениями пропорциональных отрезков и подобных треугольников, теоремой об отношении подобных треугольников

и свойством биссектрисы треугольника (задача535). Определяют подобные треугольники, находят неизвестные величины из пропорциональных отношений, применять теорию при решении задач типа 535 – 538, 541.


Формируют признаки подобия треугольников, определение пропорциональных отрезков. Доказывают признаки подобия и применяют их при р/з550 – 555, 559 – 562

Применяют все изученные теоремы при решении задач.


Формулируют теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике. Доказывают эти теоремы и применять при решении задач типа 567, 568, 570, 572 – 577. С помощью циркуля и линейки делят отрезок в данном отношении и решают задачи на построение типа 586 – 590.

Формулируют определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения. Доказывают основное тригонометрическое тождество, решают задачи типа 591 – 602.

Применяют все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач


2

Признаки подобия треугольников

5







Контрольная работа №3

1

3

Применение подобия к

доказательству теорем и решению задач

7









4

Соотношения между сторонами

и углами прямоугольного треугольника


Решение задач

3





1




Контрольная работа №4

1

Глава VIII. Окружность (16 ч)

1







Касательная к окружности

3







Знакомятся с возможными случаями взаимного расположения прямой и окружности, с определением касательной, свойством и признаком касательной. Доказывают их и применяют при решении задач типа 631, 633 – 636, 638 – 643, 648, выполнять задачи на построение


Распознают, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности. Формулируют теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд. Доказывают эти теоремы и применяют при решении задач типа 651 – 657, 659, 666


Определяют, какая окружность является вписанной в многоугольник и какая описанной около многоугольника, формулируют теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников. Доказывают эти теоремы и применяют их при решении задач типа 689 – 696, 701 – 711.



2

Центральные и вписанные углы

4







3

Четыре замечательные точки

треугольника

3

4

Вписанная и описанная окружности

4


Решение задач

1


Контрольная работа № 5

1


Повторение

4


Применяют все изученные теоремы при решении задач.

ИТОГО

70







Описание учебно-методического и материально-технического обеспечения образовательного процесса

Учебно-методические пособия.

Для учителя:

  1. Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других .7- 9 классы: пособие для учителей общеобразов. учреждений / В.Ф. Бутусов.- Москва, «Просвещение», 2013г.

  2. Гаврилова Н.Ф. Универсальные поурочные разработки по геометрии: 8 класс.- М.: ВАКО, 2010г.

  3. Изучение геометрии в 7,8,9 классах: Метод. Рекомендации к учеб.: Кн. Для учителя/ Л.С.Атанасян, В.Ф. Бутузов, Ю.А.Глазков и др - М.: Просвещение, 2009г.


Для учащихся:

  1. Геометрия 7 – 9 классы: учебник для общеобразовательных учреждений (Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев и другие). Москва: Просвещение, 2014г.


Дополнительная литература для учителя:

  1. Геометрия. 8 класс. 120 диагностических вариантов/ Панарина В.И..: Национальное гбразование, 2012г.

  2. Ершова А.П., Голобородько В.В., Ершова А.С.Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса.— М: Илекса, 2005г.

  3. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.

  4. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  5. Мищенко Т.М. Тематические тесты по геометрии: 8-й кл.: к учебнику Л.С. Атанасяна и др. «Геометрия. 7-9тклассы».- М.: Экзамен,2008г.


Дополнительная литература для учащихся:

  1. Геометрия в таблицах. 7—11 кл.: справочное пособие / авт.-сост. Л. И. Звавич, А. Р. Рязановский. — М.: Дрофа, 2005г.

  2. Маслова Т.Н., Суходский А.М. Справочник школьника по математике. 5—11 классы.  М.: Оникс, Мир Образования, 2008г.


Технические средства.

Компьютер, мультимедийный проектор, экран проекционный, принтер, DVD.

Интернет-ресурсы, которые могут быть использованы учителем и учащимися для подготовки уроков, сообщений, докладов и рефератов:

  • [link] 65

    Решение задач.

    1

    Индив.задан



    66

    Контрольная работа № 5 по теме «Окружность».

    1

    Повт п70-77



    Повторение (4 часа)

    67

    Решение задач.

    1

    карточки



    68

    Решение задач.

    1

    карточки



    69

    Решение задач.

    1

    карточки



    70

    Решение задач.

    1