Управление образования администрации города Благовещенска
МБОУ « Школа № 24 г. Благовещенска»
«ПРОВЕРЕН» «УТВЕРЖДАЮ»
Заместитель директора директор МБОУ СОШ №24
По УВР_Бурманина И.Г. Щербакова Т.В.
«___»_____ 2016г « _____» ________ 2016г. Рабочая программа
учебного курса «Математика» в 11 классе на 2016 ─ 2017 учебный год
(базовый уровень )
136 часов в год ( 4 часа в неделю), Срок реализации 1 год
Рабочая программа ориентирована на использование УМК :
А.Т.Мордкович. Алгебра – 10-11. Часть 1. Учебник. М.:»Мнемозина», 2014; А.Т.Мордкович. Алгебра – 10-11. Часть 2. Задачник. М.:»Мнемозина», 2014
Л.С.Атанасян , В.Ф.Бутузов, С.Б.Кадомцев, М. : Просвещение,2012.
Рабочая программа составлена для учащихся 11 класса на основе авторской программы А.Г.Мордкович и «Программы для общеобразовательных школ, гимназий, лицеев. Математика, 5-11-е классы. Программы. Тематическое планирование» М.: «Дрофа», 2004, утверждено Минобразования РФ.
СОСТАВИЛА: РАССМОТРЕНА
Шунина Е.П. - учитель математики на заседании методического объединения
Протокол №1 от «29.08.»2016 г. .
Благовещенск, 2016г.
1.Планируемые результаты освоения предмета математики.
В результате изучения математики на базовом уровне в старшей школе ученик должен
знать/понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
– вероятностный характер различных процессов окружающего мира;
Алгебра
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь:
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций;
– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь:
– вычислять производные и первообразные элементарных функций, используя справочные материалы;
– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
– вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь:
– решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
– составлять уравнения и неравенства по условию задачи;
– использовать для приближенного решения уравнений и неравенств графический метод;
– изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь:
– решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
– вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
– анализа информации статистического характера;
владеть компетенциями:
– учебно-познавательной;
– ценностно-ориентационной;
– рефлексивной;
– коммуникативной;
– информационной;
– социально-трудовой.
ГЕОМЕТРИЯ
Уметь:
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
2.Содержание учебного предмета.
Содержание курса «Алгебра и начала математического анализа»
Повторение курса 10 класса.
Степени и корни. Степенные функции
Понятие корня n-й степени из действительного числа. Функции у =, их свойства и графики. Свойства корня n-й степени. Преобразование выражений, содержащих радикалы. Степень с рациональным показателем и ее свойства. Понятие степени с действительным показателем. Свойства степени с действительным показателем. Степенные функции, их свойства и графики
Показательная и логарифмическая функции
Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства.
Понятие логарифма. Функция у = log a x, ее свойства и график. Свойства логарифмов. Основное логарифмическое тождество. Логарифм произведения, частного, степени. Переход к новому основанию логарифма. Десятичный и натуральный логарифмы, число e. Преобразование простейших выражений, включающие арифметические операции, а также операцию возведения в степень и операцию логарифмирования. Логарифмические уравнения. Логарифмические неравенства. Дифференцирование показательной и логарифмической функций.
Первообразная и интеграл
Первообразная и неопределенный интеграл. Правила отыскания первообразных. Таблица основных неопределенных интегралов.
Задачи, приводящие к понятию определенного интеграла. Понятие определенного интеграла. Формула Ньютона — Лейбница. Вычисление площадей плоских фигур с помощью определенного интеграла.
Элементы математической статистики, комбинаторики и теории вероятностей
Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Случайные события и их вероятности. Статистическая обработка данных. Простейшие вероятностные задачи. Сочетания и размещения. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события.
Уравнения и неравенства. Системы уравнений и неравенств.
Равносильность уравнений. Общие методы решения уравнений: замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x), разложение на множители, введение новой переменной, функционально-графический метод Решение простейших систем уравнений с двумя неизвестными.
Решение неравенств с одной переменной. Равносильность неравенств, системы и совокупности неравенств, иррациональные неравенства, неравенства с модулями. Системы уравнений. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем. Применение математических методов при решении содержательных задач из различных областей науки и практики Интерпретация результата, учет реальных ограничений. Уравнения и неравенства с параметрами.
7. Повторение
Содержание курса «Геометрия»
Векторы в пространстве.
Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.
2. Метод координат в пространстве.
Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Угол между векторами. Координаты вектора. Простейшие задачи в координатах. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, колллинеарность векторов в координатах. Компланарные векторы. Разложение по трем некомпланарным векторам.
3. Цилиндр, конус, шар.
Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере. Сфера, вписанная в многогранник, сфера описанная около многогранника. Центральная, осевая и зеркальная симметрии. Параллельный перенос.
Объемы тел.
Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Итоговое повторение
Формы организаций учебных заданий.
Для работы со старшеклассниками, я выделяю для себя следующие формы: лекция, семинар, практикум, урок-консультация, практическая работа, коллоквиум, зачет.
Виды и формы контроля: входной контроль, промежуточный (самостоятельные работы, проверочные работы, блиц-опрос), тестирование, зачетная система контроля, контрольные работы, переводная аттестация, пробные работы в форме ЕГЭ, итоговая аттестация (ЕГЭ).
Основные виды учебной деятельности.
На уроках используются следующие виды деятельности учащихся:
I - виды деятельности со словесной (знаковой) основой:
• Слушание объяснений учителя.
• Слушание и анализ выступлений своих товарищей.
• Самостоятельная работа с учебником
. • Работа с научно-популярной литературой;
• Отбор и сравнение материала по нескольким источникам.
• Написание рефератов и докладов.
• Вывод и доказательство формул. •
• Решение текстовых количественных и качественных задач
• Выполнение заданий по разграничению понятий
• Систематизация учебного материала.
II - виды деятельности на основе восприятия элементов действительности:
• Анализ графиков, таблиц, схем. • Анализ проблемных ситуаций.
• Изготовление плоских чертежей объемных фигур.
III - виды деятельности с практической (опытной) основой
Работа с раздаточным материалом.
Решение экспериментальных задач.
Педагогические технологии, применяемые в процессе обучения:
технология коммуникативного обучения;
технология личностно-ориентированного обучения;
технология проблемного обучения;
информационно-коммуникационная технология;
здоровьесберегающих технологии.
Здоровьесберегающих технологии, применяемые в процессе обучения:
зарядка для глаз;
смена видов деятельности;
эмоциональная разрядка;
построение урока в соответствии с динамикой внимания, учитывая время каждого задания.
3.Тематическое планирование. (11 класс)
- Метод координат в пространстве.
14
1
5
Показательная, логарифмическая функции
24
3
6
Цилиндр, конус, шар.
15
1
7
Интеграл
7
1
8
Элементы комбинаторики, статистики и теории вероятностей.
11
1
9
Объемы тел.
18
1
10
Уравнения и неравенства. Системы уравнений и неравенств
17
1
11
Повторение курса 10 и 11 классов.
10
1
Итого
136
10
Приложение № 1
4.Календарно-тематическое планирование 11 класс, 2016 – 2017 уч.год
(базовый уровень)
Дата по
плану
Дата
фактически
Повторение
курса 10 – го класса ( 5часов)
1
Тригонометрические функции
1
2
Тригонометрические уравнения
1
3
Производная
1
4
Применение производной
1
5
Входной контроль
1
Степени и корни. Степенные функции (15 часов)
5
Понятие корня n-й степени из действительного числа
1
6
Понятие корня n-й степени из действительного числа
1
7
Функции y= x , их свойства и графики
1
8
Построение графиков функций y= x
1
9
Свойства корня n-й степени
1
10
Вычисление корней n-й степени
1
11
Преобразование выражений, содержащих радикалы
1
12
Обобщение понятия о показателе степени
1
13-14
Решение иррациональных уравнений
2
15
Степенные функции, их свойства и графики
1
16
Построение графиков степенных функций
1
17
Производная степенной функции
1
18
Обобщающий урок по теме "Степени и корни. Степенные функции "
1
19
Контрольная работа № 1 по теме"Степени и корни. Степенные функции "
1
Метод координат в пространстве (14 часов)
Координаты точки и координаты вектора.
20
Прямоугольная система координат в пространстве.
1
21
Координаты вектора
1
22
Связь между координатами векторов и координатами точек.
1
23
Простейшие задачи в координатах.
1
24
Контрольная работа по теме «Вектора» № 2
1
Скалярное произведение векторов.
25
Угол между векторами.
1
26
Скалярное произведение векторов.
1
27
Вычисление углов между прямыми и плоскостями.
1
28
Решение задач.
1
29
Решение задач.
1
Движения.
30
Центральная симметрия. Осевая симметрия.
31
Зеркальная симметрия. Параллельный перенос.
1
32
Решение задач.
1
33
Контрольная работа по тем «Скалярное произведение векторов» № 3
1
Показательная и логарифмическая функции (24 часа)
1
34
Показательная функция, ее свойства и график.
1
35
Показательная функция, ее свойства и график.
1
36
Показательная функция, ее свойства и график.
1
37
Показательные уравнения и неравенства
1
38
Показательные уравнения и неравенства
1
39
Показательные уравнения и неравенства
1
40
Контрольная работа по тем «Показательная функция» № 4
1
41
Понятие логарифма.
1
42
Логарифмическая функция, ее свойства и график.
1
43
Логарифмическая функция, ее свойства и график.
1
44
Свойства логарифмов.
1
45
Свойства логарифмов.
1
46
Логарифмические уравнения.
1
47
Логарифмические уравнения.
1
48
Логарифмические уравнения.
1
49
Контрольная работа «Логарифмическая функция» № 5
1
50
Логарифмические неравенства.
1
51
Логарифмические неравенства.
1
52
Логарифмические неравенства.
1
53
Переход к новому основанию логарифма
1
54
Переход к новому основанию логарифма
1
55
Дифференцирование показательной и логарифмической функций.
1
56
Дифференцирование показательной и логарифмической функций
1
57
Контрольная работа «Показательная и логарифмическая функции» № 6
1
Цилиндр, конус, шар (15 часов)
Цилиндр.
58
Понятие цилиндра.
1
59
Площадь поверхности цилиндра.
1
60
Решение задач по теме «Цилиндр»
1
Конус.
61
Понятие конуса.
1
62
Площадь поверхности конуса.
1
63
Усеченный конус.
1
64
Решение задач по теме «Конус»
1
65
Решение задач по теме «Конус»
1
Сфера.
66
Сфера и шар.
1
67
Уравнение сферы.
1
68
Взаимное расположение сферы и плоскости.
1
69
Касательная плоскость к сфере.
1
70
Площадь сферы.
1
71
Решение задач по теме «Сфера»
1
72
Контрольная работа по теме «Цилиндр. Конус. Шар» № 7
1
Уравнения и неравенства. Системы уравнений и неравенств (17 часов)
109
Равносильность уравнений.
1
110
Равносильность уравнений.
1
111
Общие методы решения уравнений.
1
112
Общие методы решения уравнений.
1
113
Общие методы решения уравнений.
1
114
Решение неравенств с одной переменной
1
115
Решение неравенств с одной переменной
1
116
Решение неравенств с одной переменной
1
117
Уравнения и неравенства с двумя переменными.
1
118
Уравнения и неравенства с двумя переменными.
1
119
Системы уравнений.
1
120
Системы уравнений.
1
121
Системы уравнений.
1
122
Уравнения и неравенства с параметрами
1
123
Уравнения и неравенства с параметрами
1
124
Уравнения и неравенства с параметрами
1
125
Контрольная работа по теме «Уравнения и неравенства» № 12
1
126
Повторение (10часов )
127
Решение рациональных неравенств.
1
128
Решение текстовых задач.
1
129
Решение текстовых задач.
1
130
Решение тригонометрических уравнений и систем уравнений
1
131
Решение тригонометрических неравенств.
1
132
Применение производных к решению задач.
1
133
Итоговая контрольная работа № 13
1
134
Итоговая контрольная работа № 13
1
135
Многогранники.
1
136
Тела вращения
1