Зачет по алгебре и началам анализа в 11 классе ПРОИЗВОДНАЯ И ЕЕ ПРИМЕНЕНИЕ

Автор публикации:

Дата публикации:

Краткое описание: ...











ЗАЧЕТЫ

ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА

В 11 КЛАССЕ












Учитель математики: Чубарь Нина

Сергеевна






Зачет по теме:

«Производная и её применение»

Теоретические вопросы:

  1. Приращение функции и аргумента.

  2. Определение производной.

  3. Геометрический и физический смысл производной.

Мгновенная скорость.

  1. Таблица производных элементарных функций.

  2. Правила вычисления производных (производная суммы,

разности, произведения и частного).

  1. Производная сложной функции.

  2. Непрерывность функции. Метод интервалов.

  3. Критические точки функции.

  4. Стационарные точки.

  5. Точки перегиба.

  6. Точки экстремума функции.

  7. Необходимое и достаточное условие существования

экстремума функции.

  1. Наибольшее и наименьшее значение функции.

  2. Уравнение касательной функции.

  3. Признак возрастания и убывания функции.

  4. Приближенные вычисления.

  5. Исследование функции с помощью производной.

Задачи

Уровень А

каждое задание оценивается в 3 балла

  1. Найдите приращение функции в точке х0, если f(x)=; х0=3; Δх =0,1.

  2. Вычислите значение производной функции f(x) = 4x7+6x4+10x при х=1.

  3. Решите неравенство f'(x)>0, если f(x)=-6x2-15x.

  4. Вычислите производную функции f(x)=

  5. Найдите значение производной функции при заданном значении аргумента, если f(x)=2 tg x; x0=0.

  6. Решите уравнение: f'(x)=0, если f(x)=-x3+4х2-9x.

  7. Вычислите в точке х0, если f(x)=15x2-7, х0=2, Δх =0,5.

  8. Вычислите значение производной функции f в данной точке, если

f(x)=2х ∙ cosx; x0=0.

  1. Найдите значения х, при которых производная функции f равна нулю, если f(x)=2 x4-16х3.

  2. Решите неравенство (3х-6)(2х+4) ≥ 0.

  3. Найдите область определения функции f(х) = .

  4. Точка движется прямолинейно по закону х (t) = 6t3+2t-3. Найдите скорость в момент времени t= 2 с.

  5. Найдите промежутки возрастания функции f(х) = 7х2-8х+3

  6. Найдите критические точки функции f(х) = 8х3-5х2-4.

  7. Определите, какие из них являются точками максимума, а какие – точками минимума.

  8. Докажите, что функция f(х) = 6х5+4х не имеет критических точек.

  9. Найдите промежутки убывания функции f(х) = 4+16х-х

  10. Напишите уравнение касательной к графику функции f(х) = х3-6 в точке с абсциссой х0 = -1 Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через данную точку А (1;2) графика функции f(х) = х2+4х


Уровень В

-каждое задание оценивается в 4 балла


  1. Найдите мгновенную скорость точки, движущейся по закону х (t)=t2-4, в момент времени t0=4.

  2. Найдите f'(x), f'(-2), если f(x) = (2+)(x-2).

  3. Решите неравенство f'(x)>0, если f(x)=sin2x.

  4. Найдите производную данной функции f(x)=. Вычислите

  5. 2f'(-2)+3f (1).

  6. Вычислите значение производной функции при заданном значении аргумента, если f(x)= ()∙ ctgx; x0=.

  7. Составьте и решите уравнение: f'(x)= f(x) – 3х, если f(x)=3х+.

  8. Найдите производную функции f(x)=(2-)∙tg2x.

  9. Решите уравнение f'(x)=0, если f(x)=1,5sin2x-5sinx-x.

  10. Докажите, что при всех допустимых значениях х производная функции g(x) не может принимать отрицательных значений, если: g(x)=tg.

  11. Вычислите приближенное значение 1,005100.

  12. На графике функции g(х) = найдите точку, в которой касательная к графику параллельна оси абсцисс.

  13. Найдите угловой коэффициент касательной к графику функции

  14. f(х) = (х2+2)(х3-3), в точке х0 = 2.

  15. Найдите точки экстремума функции f(х) = (х+1)2(х+5)2.

  16. Найдите критические точки функции f(х) = sin.

  17. Колесо вращается так, что угол поворота пропорционален квадрату времени. Первый оборот был сделан колесом за 6 с. Найдите угловую скорость через 40с после начала вращения.

  18. Найдите наибольшее значение функции f(х) = (х+1)2(х+4) на данном промежутке [-5;0]

  19. Исследуйте функцию у= 2х2+3х-5 и постройте её график.

  20. При каких значениях n функция f(х) = непрерывна на всей числовой прямой.




Уровень C

- каждое задание оценивается в 5 баллов

  1. Найдите корни уравнения f '(x)=0, принадлежащие отрезку [], если f(х) = cos (.

  2. Найдите производную функции f(x) =, в точке х0=.

  3. Укажите, какой формулой можно задать функцию у= f(x), если

  4. f '(x)=-20 (4-5х)3.

  5. Найдите точки, в которых f '(х)=0, f '(x)>0, если f (x)=4x+cos (4x-).

  6. Найдите значения аргумента, удовлетворяющие условию f '(х)=g' (x), если f(x)= , g (x) =.

  7. Найдите производную функции у=tg(3x-), в точке х0=.

  8. Дано: f(x) = csin2x+ d cosx, f '()= 4; f '()=-8. Чему равны c и d?

  9. Вычислите скорость изменения функции у= cos () в точке х0=.

  10. При каких значениях х выполняется равенство f '(х)=2, если известно, что

f (х)=2-5?

  1. Исследуйте функцию и постройте её график: у = .

  2. Среди всех равнобедренных треугольников с боковой стороной 5 см найдите треугольник наибольшей площади.

  3. Исследуйте функцию у=х2 и постройте её график.

  4. Найдите точки экстремума функции f(х) = cos 2х+2sin х .

  5. Известно, что наименьшее значение функции f(х) = 3х23 на промежутке

[-2; в] равно нулю. При каком максимальном значении выполняется это

условие?

  1. Составьте уравнение касательной к графику функции f(х) =, если её угловой коэффициент равен к=.



Примеры решения задач по теме: «Производная»

1). Найдите приращение функции в точке х0, если f(x)=; х0=1; Δх =0,1.

Решение:

1. Находим значение х0+Δх: х0+Δх=1+0,1=1,1

2. Вычисляем значение f(x0): f(1)=

3.Вычисляем значение f(x0+Δх): f(1,1)=

4. Находим приращение функции Δf(x): Δf(x)= f(1,1)- f(1)=0,605- 0,5=0,105

Ответ: Δf(x)=0,105


2). Вычислите значение производной функции f(x) = 8x6+5x3+12x при х=1.

Решение:

1. f '(x) = (8x6)' +(5x3)' +(12x)'=8∙6х5+5∙3х2+12∙1=48х5+15х2+12

2. f '(1)= 48∙15+15∙12+12=75

Ответ: 75


3). Решите неравенство f '(x)>0, если f(x)= -10x2-17x.

Решение:

1. f '(x)=(-10x2)'- (17x)'= -10∙2х-17∙1= -20х-17

2. f '(x)>0, -20х-17>0, -20х >17, х< -

Ответ: f '(x)>0, при х<-.

4). Вычислите производную функции f(x)=

Решение:

f '(x)==



5). Найдите значение производной функции при заданном значении аргумента, если f(x)=5 tgx, x0=.

Решение:

1. f '(x)=( 5 tgx)'=5∙

2. f '()=5∙

Ответ: f '()=20

6). Решите уравнение: f '(x)=0, если f(x)=x32-3x.

Решение:

1. f '(x)=(x3)'+(х2)'-(3x)'=∙3x2+∙2х-3∙1=2х2+х-3

2. f '(x)=0, 2х2+х-3=0, D= в2-4ас=12-4∙2∙ (-3)=25,

х1=

х2=

Ответ: f '(x)=0, при х = -1,5; 1

7). Вычислите значение производной функции в данной точке, если

f (x)=3х∙sin x, x0=0

Решение:

1. (uv)'=u'∙v + uv'

f '(x)=(3x)' sin x + 3x ∙(sin x)' = 3 ∙sin x + 3x ∙ cos x

2. f '(0)= 3∙ sin 0 + 3∙ 0 ∙cos 0 = 3 ∙0 + 0 ∙1 = 0

Ответ: f '(0)= 0







Примеры решения задач по теме «Применение производной»


1). Решите неравенство (4х-6)(5х+10) ≥ 0.

Решение:

1. Рассмотрим функцию у= (4х-8)(5х+10)

2. Найдем нули функции: у=0, (4х-8)(5х+10) = 0, 4х-8=0 или 5х+10=0

4х=8 5х=-10

+ _ +

3. """"∙ ∙""""" х

-2 2

Ответ: (],

2). Найдите область определения функции f(х) = .

Решение:

1. Решим неравенство: 2х2+х-3≥ 0

2. Рассмотрим функцию у=2х2+х-3 и найдем ее нули:

2+х-3=0, D= в2-4ас=12-4∙2∙ (-3)=25,

х1=

х2=

+ - +

3. """"∙ ∙""""" х

-1,5 1

Ответ: (],

3). Точка движется прямолинейно по закону х (t) = 5t3+30t-7 (м). Найдите скорость в момент времени t= 1 с.

Решение:

1. v(t)= х '(t) =(5t3+30t-7)'=5∙3t2+30∙1-0=15 t2+30

2. v(1)= 15 ∙12+30= 45 (м/с)

Ответ: v(1)= 45 м/с.



4). Найдите промежутки возрастания и убывания функции f(х) = 10х2-2х+1

Решение:

1. Область определения функции: D(f)=R

2. Найдем производную функции: f '(х) = (10х2-2х+1)'=10∙2х-2∙1+0=20х-2

3. Решим неравенства: а) f '(х)>0, б) f '(х)<0.

20х-2>0 20х-2<0

20х>2 20х<2

х > х <

Ответ: функция f(х) = 10х2-2х+1 возрастает при х >, убывает при х < .


5). Найдите критические точки функции f(х) = 5х3+3х2-1

Определите, какие из них являются точками максимума, а какие – точками минимума.

Решение:

1. Найдем производную данной функции: f (х) = (5х3+3х2-1)'=

=5∙3х2+3∙2х-0=15х2+6х

2. Найдем критические точки: f '(х)=0, 15х2+6х=0, 3х (5х+2)=0, х=0 или 5х+2=0, 5х = -2, х = -0,4

+ - +

3. """"∙ ∙""""" х

-0,4 0

max min

Ответ: хmax= -0,4, xmin=0.

6). Напишите уравнение касательной к графику функции f(х) = 3х3+4 в точке с абсциссой х0 = 2.

Решение:

1. Найдем у0= f0): f(2)= 3∙23+4=28

2. Найдем f '(х): f '(х)= (3х3+4)'=3∙3х2+0=9х2

3.Найдем f '(х0): f '(2)=9∙22=36

4. Подставим полученные результаты в уравнение касательной:


у= у0 + f '(х0)∙ (х-х0):

у=28+36(х-2), у=28+36х-72, у=36х-44- искомое уравнение касательной.

7). Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через данную точку А (2;-3) графика функции f(х) =х3+2х.

Решение:

1. Найдем производную: f '(х) =(х3+2х)'=3х2+2

2. Найдем f '(х): f '(2)= 3∙22+2=14

3. tg= f '(2)=14

Ответ: 14
























Литература.

1. Алгебра и начала математического анализа 10 класс. Учебник. Базовый и профильный уровни Никольский С.М. и др. 8-е изд. - М.: Просвещение, 2009.

2. А.П. Ершова, В.В. Голобородько. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов.

3.Ю.А. Глазков, И.К. Варшавский, М.Я. Галашвили. Тесты по алгебре и началам анализа. 10 класс. Издательство «Экзамен». Москва,2010.