Рабочая программа по геометрии 11 класс.
Пояснительная записка.
Данная программа по геометрии для 11 класса рассчитана на 70 часов из расчета 2 часа в неделю. Программа составлена на основе «Программы общеобразовательных учреждений. Геометрия 10-11 классы», автор Т.А. Бурмистрова, М.: Просвещение, 2011, учебника Л.С. Атанасяна и др «Геометрия 10 - 11» М: Просвещение 2014.
Цели:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи:
систематическое изучение свойств геометрических тел в пространстве;
формирование умения выполнять дополнительные построения, сечения;
формирование умения вычислять площади и объёмы пространственных фигур;
развитие пространственных представлений учащихся;
развитие умения находить угол между прямой и плоскостью, угол между плоскостями;
освоение способов вычисления практически важных геометрических величин;
дальнейшее развитие логического мышления учащихся.
Содержание тем учебного курса.
Повторение (4 ч).
Параллельность и перпендикулярность прямых и плоскостей. Векторы в пространстве.
Цель: повторение и систематизация материала 10 класса.
Метод координат в пространстве (14 ч).
Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.
Цель: введение понятия прямоугольной системы координат в пространстве, формирование у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.
3. Цилиндр, конус, шар (13 ч)
Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.
Цель: формирование у учащихся систематических знаний об основных видах тел вращения, их свойствах.
3. Объемы тел (19 ч).
Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.
Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов, продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.
Итоговое повторение (20 ч.)
Цель: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения
Результаты освоения учебного предмета:
В результате изучения геометрии в 11 классе ученик должен знать и уметь:
соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями;
различать и анализировать взаимное расположение фигур;
изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей пространственных тел и их простейших комбинаций;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); использовать при решении стереометрических задач планиметрические факты и методы;
применять координатно-векторный метод для вычисления отношений, расстояний и углов;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства;
строить сечения многогранников.
Учебно-методический комплект:
Программа общеобразовательных учреждений. Геометрия 10-11 классы. /Т.А. Бурмистрова/ М.: Просвещение, 2011;
Учебник Л.С. Атанасяна и др «Геометрия 10 - 11» М: Просвещение 2014;
Геометрия 11 класс. Контрольно – измерительные материалы./ А.Н. Рурукин / М.: ВАКО, 2013;
Геометрия 11. Самостоятельные и контрольные работы. / А.И. Ершова, В.В. Голобородько / М.: ИЛЕКСА, 2013.
Геометрия 11. Дидактические материалы. / Б.Г. Зив / М.: Просвещение, 2011.
Календарно-тематический план по геометрии 11 класс.
2 часа в неделю, всего 70 часов
1 четверть – 18 ч
2 четверть – 14 ч
3 четверть – 20 ч
4 четверть – 18 ч
Всего за год 6 контрольных работ и 7 проверочных, самостоятельных работ.
1 четверть: 2 к.р. 1 пр.р.
2 четверть: 2 к.р. 1 пр.р.
3 четверть: 1 к.р. 3 пр.р.
4 четверть: 1 к.р. 2 пр.р.
Тематическое планирование:
урока Дата
план
Дата
факт
Содержание учебного материала
Элементы содержания
Требования к уровню подготовки
Контроль усвоения знаний
Повторение (4 часа)
1
02.09
Параллельность и перпендикулярность прямых и плоскостей.
Признаки параллельности и перпендикулярности плоскостей и прямых. Понятие вектора в пространстве.
2
07.09
Многогранники.
3
09.09
Векторы в пространстве.
4
14.09
Векторы в пространстве.
Метод координат в пространстве (14 часов)
5
16.09
Входная контрольная работа по расписанию.
К.р.
6
21.09
Прямоугольная система координат в пространстве.
Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами векторов и координатами точек. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.
Знать: Алгоритм разложения векторов по координатным векторам, сложения двух и более векторов, произведение вектора на число, разности двух векторов, признаки коллениарности и компланарности векторов, формулы координат середины отрезка, формулы длины вектора и расстояния между двумя точками, алгоритм вычисления длины вектора, длины отрезка, координат середины отрезка, построение точек по координатам.
Иметь представление о каждом из видов движения: осевая, центральная, зеркальная симметрия, параллельный перенос, уметь выполнять построение фигуры
7
23.09
Координаты вектора.
8
28.09
Связь между координатами векторов и координатами точек
9
30.09
Простейшие задачи в координатах.
10
05.10
Простейшие задачи в координатах.
11
07.10
Угол между векторами. Скалярное произведение векторов.
12
12.10
Угол между векторами. Скалярное произведение векторов.
13
14.10
Вычисление углов между прямыми и плоскостями
14
19.10
Вычисление углов между прямыми и плоскостями
Пр.р.
15
21.10
Центральная симметрия. Осевая симметрия.
16
26.10
Зеркальная симметрия. Параллельный перенос.
17
28.10
Решение задач.
18
Контрольная работа № 1 «Векторы. Скалярное произведение векторов. Движения».
К.р.
Цилиндр, конус, шар (13 часов)
19
Понятие цилиндра. Площадь поверхности цилиндра.
Понятие цилиндра, конуса, усеченного конуса, их элементов, площади поверхности цилиндра.
Понятие сферы, шара. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере.
Знать: понятие и элементы цилиндра, конуса, шара, формулы площади боковой и полной поверхности цилиндра, конуса, шара. Элементы усеченного конуса, свойство касательной к сфере,
уравнение сферы, формулу площади сферы.
Уметь: различать в окружающем мире предметы-цилиндры, конусы, выполнять чертеже по условию задачи, находить площади сечений, строить сечения. Решать задачи на нахождение площади поверхности цилиндра, конуса и усеченного конуса, шара, определять взаимное расположение сферы и плоскости. Составлять уравнение сферы по координатам точек;
решать типовые задачи, применять полученные знания в жизненных ситуациях, решать задачи на комбинацию: призмы и сферы, конуса и пирамиды.
20
Решение задач по теме «Понятие цилиндра. Площадь поверхности цилиндра»
21
Понятие конуса. Площадь поверхности конуса.
22
Усеченный конус. Решение задач по теме «Понятие конуса. Площадь поверхности конуса».
23
Решение задач по теме «Понятие конуса. Площадь поверхности конуса. Усеченный конус».
С.р.
24
Сфера и шар. Уравнение сферы.
25
Сфера. Взаимное расположение сферы и плоскости.
26
Касательная плоскость к сфере.
27
Площадь сферы.
28
Разные задачи на многогранники, цилиндр, конус и шар.
29
Разные задачи на многогранники, цилиндр, конус и шар.
30
Контрольная работа за 1 полугодие по расписанию.
К.р.
31
Контрольная работа №2 «Цилиндр, конус и шар».
К.р.
Объемы тел (19 часов)
32
Понятие объема. Объем прямоугольного параллелепипеда.
Понятие объема. Объем прямоугольного параллелепипеда, прямой призмы, наклонной призмы, пирамиды, цилиндра, конуса, шара, шарового сегмента, шарового сектора, шарового слоя. Вычисление объемов тел с помощью определенных интегралов. Площадь сферы.
Знать: формулы объема прямоугольного параллелепипеда, теорему об объеме прямой призмы, формулу объема цилиндра, конуса.
Иметь представление о вычислении объемов тел с помощью определенного интеграла, формулу объема шара.
Иметь представление о шаровом сегменте. шаровом секторе, слое.
Знать: формулы объемов этих тел, формулу площади сферы.
Уметь: находить объем куба и объем прямоугольного параллелепипеда, прямой и наклонной призмы, пирамиды, конуса, цилиндра, шара, усеченного конуса, решать простейшие стереометрические задачи на нахождение объемов.
Уметь: выводить формулу с помощью определенного интеграла и использовать ее при решении задач.
Использовать приобретенные знания и умения в практической деятельности.
33
Объем прямой призмы.
34
Объем цилиндра.
35
Вычисление объемов тел с помощью определенных интегралов.
36
Объем наклонной призмы.
37
Решение задач по теме «Объем призмы».
38
Решение задач по теме «Объем призмы».
39
Объем пирамиды.
40
Объем конуса.
41
Решение задач по теме «Объем пирамиды, конуса».
Т.д.
42
Решение задач по теме «Объем пирамиды, конуса».
Пр.р.
43
Объем шара.
44
Объем шарового сегмента, шарового слоя и шарового сектора.
45
Площадь сферы.
46
Решение задач по теме «Объем шара, площадь сферы».
47
Решение задач по теме «Объем шара, площадь сферы».
48
Решение задач по теме «Объемы тел».
С.р.
49
Решение задач по теме «Объемы тел».
50
Контрольная работа №3 «Объемы тел».
К.р.
Итоговое повторение (20 часов)
51
Взаимное расположение прямых и плоскостей. Параллельность и перпендикулярность прямых и плоскостей.
52
Взаимное расположение прямых и плоскостей. Параллельность и перпендикулярность прямых и плоскостей.
53
Скрещивающиеся прямые. Угол между прямой и плоскостью, двугранный угол.
54
Скрещивающиеся прямые. Угол между прямой и плоскостью, двугранный угол.
55
Многогранники: параллелепипед, призма, пирамида, площади их поверхностей
56
Многогранники: параллелепипед, призма, пирамида, площади их поверхностей
57
Многогранники: параллелепипед, призма, пирамида, площади их поверхностей
58
Цилиндр, конус и шар, площади поверхностей тел.
Т.д.
59
Цилиндр, конус и шар, площади поверхностей тел.
Пр.р.
60
Цилиндр, конус и шар, площади поверхностей тел.
61
Объемы тел.
62
Объемы тел.
63
Объемы тел.
64
Вписанные многогранники.
65
Описанные многогранники.
66
Решение задач на комбинации тел.
67
Итоговая контрольная работа по расписанию.
К.р.
68
Решение задач на комбинации тел.
69
Решение задач на комбинации тел.
70
Решение задач на комбинации тел.
Итого: 70 часов