Бақылау жұмысы № 1.
Тақырып«Функция, оның қасиеттері»
Мақсаты:
-Функциясының берілген нүктелердегі мәнін табу;
-функцияның анықталу облысын табу;
- функциясының графигін салу және график бойынша зерттеу жүргізе білу;
-функцияның қасиеттерін білу.
Нұсқа-1 Нұсқа-2
1. Функцияның жұп немесе тақ екенін дәлелдеңдер:
y=f(x) y=f(х)
2 f(-4) + f(3) f(-3) + 2 f(1)
Eгер,f(4)=1, f(-3)=2 eгер,f(3)=4, f(-1)=2
2. функциясының X0нүктелеріндегі мәндерін тап:
X0 = -2 ;X0 = 4 X0 = -3;X0 = 1
3. Функцияның графигін салып,координат осьтермен қиылысу нүктелерінің координаттарын табындар:
4.Функцияның анықталу облысын табыңдар:
5. Функцияның өсетін және кемитін аралықтарын,экстремумын анықтандар:
Бағалау критерийлері:
0-10 ұпай – «2»
11-14ұпай– «3»
15-19 ұпай – «4»
20-21 ұпай– «
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
Жұп және тақ функциясы.
№1
20%
Функцияның нүктедегі мәні.
№2
20%
Функцияның графигі және қасиеті.
№3,4
№5
40%
барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
Функцияның тақ,жұптығын анықтау.
Функцияның тақ,жұптығын білу.
2
3
Жауабының жазылуы.
1
2
Функцияның нүктелеріндегі мәндері .
Мәндері дұрыс тапты.
2
3
Есептеу.
1
3
Функцияның графигі және қасиеттері.
Графигін салу.
2
5
абсцисса осімен қиылысуы.
1
ординатта осімен қиылысуы.
2
Жауабының жазылуы.
1
4
Функцияның анықталу облысы.
Составление условий для нахождения области определения
2
5
Теңсіздікті шешу.
1
Жауабының жазылуы.
2
5
Функцияның өсу,кемуаралықтары,экстремумы.
Параболаның төбесі.
1
5
модульдін қасиеті.
1
графиктің кестесі
2
Жауабының жазылуы.
1
Бақылау жұмысы№2
Тақырып: «Тригонометриялық функциялар.»
Мақсаты: Тарауы бойынша білім,білік,дағдыларын тексеру;
- Тригонометриялық функциялардың периодтылығын табу;
-Тригонометриялық формулаларды қолданып өрнекті ықшамдау;
- тригонометриялық функцияның мәнін табу;
- тригонометриялық функцияның графигін сала білу;
-график бойынша функциясының қасиеттерін аңықтау.
Нұсқа-1 Нұсқа-2
1.Функциясының ең кіші оң периодын анықтаңдар:
2.Өрнекті ықшамдаңдар:
3. Функцияның графигін салыңдар:
4. Функцияның графигін салмай,функцияның анықталу облысын және мәндерінің облысын тап:
5. Есептеңдер:
cos(2 arcsin1\3) cos(2 arcsin1\5)
Бағалау критерийлері:
0-10 ұпай– «2»
11-14 ұпай – «3»
15-19 ұпай – «4»
20-21 ұпай – «5»
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
.
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
тригонометрияфункцияның қасиеттері және графигі.
№1
№3,4
№5
80%
тригонометриялық өрнектерді түрлендіру.
№2
20%
барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
Анықталу облысы
Тригонометриялық функцияның ең кіші периодын анықтау
1
3
Формула бойынша периодын анықтау
1
Жауабының жазылуы
1
2
Кері тригонометриялықфункцияның мәнін табу
Кері функцияның оң аргументтің анықтау.
1
3
кері функцияның теріс аргументтің анықтау.
1
Өрнектің мәнін табу.
1
3
Тригонометриялық функцияның графигі
абсцисса осі бойымен көшіру.
1
5
Ордината осінің бойымен созу.
1
Дұрыс салу.
1
Функцияның нөлдері.
1
Өсу және кему аралықтары.
1
4
тригонометриялықфункцияның мәндерінің облысы.
Анықталу облысы
1
5
Мәндерінің облысы
2
Дұрыс жауап.
1
Жауабының жазылуы.
1
5
Свойства монотонности
Бұрыштың радиандық өлшемі
1
5
Промежутки монотонности
3
Жауабынжазу
1
Бақылаужұмысы № 3
Тақырыбы: «Тригонометриялық теңдеулер мен теңсіздіктер»
Мақсаты: Тарауы бойынша білім,білік, дағдыларын тексеру.
- тригонометрия функцияның кері мәнін табу;
- қарапайым тригонометриялық теңдеуді шешу білу;
- біртектес тригонометриялық теңдеуді шешу білу;
- тригонометриялық формулаларды түрлендіружолымен шешілетін теңдеуді шешу білу.
- тригонометриялық теңсіздік жүйесін шешу білу;
Нұсқа-1 Нұсқа-2
1. Теңдеуді шешіңдер:
а) а)
б) б)
2. Теңдеуді шешіңдер:
а) а)
б) б)
3. Теңсіздіктерді шешіңдер:
4. Теңдеулер жүйесін шешіңдер:
5. Теңсіздіктер жүйесін шешіңдер:
Бағалау критерийлері:
0-12 ұпай– «2»
13-16 ұпай – «3»
17-21 ұпай – «4»
22-23 ұпай – «5»
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
Тригонометриялық теңдеу
№1
№2
40%
Тригонометриялық теңсіздік .
№3
20%
Жүйелер
№4
№5
40%
барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
тригонометриялық теңдеуді шешу
Қарапайым тригонометриялық теңдеуді шешу.
2
5
Қосу формулаларын қолдану.
1
Біртектес тригонометриялық теңдеуді шешу.
1
Дұрыс жауап.
1
2
Тригонометриялық теңдеуді шешу.
теңдеуді тиімді тәсілмен шығару.
3
5
Квадрат теңдеуді шешу.
1
Жауабын таңдау.
1
Теңсіздікті шешу
2
Жауабын таңдау.
1
Жауабының жазылуы
1
3
Тригонометриялық теңсіздіктерді шешу.
Теңсіздікті түрлендіру
1
3
Теңсіздікті шешу
1
Жауабын таңдау
1
4
Тригонометриялық теңдеулер жүйесін шешу.
Жаңа айнымалыны еңгізу.
1
5
Тригонометриялық функцияларды көбейтіндіге түрлендіру.
1
Теңдеуді шешу.
2
Жауабының жазылуы.
1
5
Тригонометриялық теңсіздік жүйесін шешу.
Қарапайым теңсіздікті шешу.
2
5
Жалпы шешімді аңықтау.
3
Бақылаужұмысы№ 4
Тақырыбы: «Туындының анықтамасы.Туындының физикалық және геометриялық мағынасы.»
Мақсаты: Тақырып бойынша білім,білік,дағдыларын тексеру.
-Берілген функциялардың туындысын табу;
-Функцияның графигіне жүргізілген жанаманың теңдеуін жазу;
-функциясының берілген нүктелердегі туындысының мәндерін табу;
- туындының физикалы мағынасын есеп шығаруда қолдану.
Нұсқа-1 Нұсқа-2
1.Функцияның туындысын табындар:
а) а) б) - 8х3 б) )+ 3х5
2. f(x)функциясының графигіне x0 нүктесінде жүргізілген жанаманың теңдеуін жазыңдар:
, x0=-1 , x0 = 1
3.Теңдеуді шешіңдер:
Егер, егер,
4. Теңсіздікті шешіңдер:Егер,
5.Материалдық нүкте заң бойынша қозғалады.
x(t)= 5t + 6t2 – t3 x(t) = – t2 + 2t – 4
( х – метрмен, t – секундпен)
егер,жылдамдығы 1 м\с; үдеуі 0-ге тең болса;жылдамдығын мен үдеуін табыңдар.
Бағалау критерийлері:
0-12ұпай– «2»
13-16 ұпай– «3»
17-21 ұпай– «4»
22-23ұпай– «5»
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
Туындысын табу.
№1
№3,4
60%
Туындының геометриялық мағынасы.
№2
20%
Туындының физикалық мағынасы.
№5
20%
Барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
Туындыны табу
Туынды кестесін білу
1
3
Көбейтудің туындысы
1
Дәрежелік туындысы
1
2
Жанаманың теңдеуін құрастыру.
Функцияның графигіне жүргізілген жанаманың теңдеуі.
1
5
Туындыны табу
1
Функциясының нүктелеріндегі туындының мәнін табу.
1
Функуиясының графигіне нүктесінде жүргізілген жанаманың теңдеуін жаз.
1
Жауабының жазылуы
1
3
.
Теңдеуді құрастырып және шешіп туындысын табу.
Бөлшектің туындысын табу.
1
5
Нүктедегі туындысын табу.
1
Теңдеу құру.
1
Теңдеуді шешу.
1
Жауабының жазылуы.
1
4
Теңсіздіктің туындысын табу және құрастыру.
Туындысын табыңдар.
1
5
Теңсіздікті құрастыру.
1
Теңсіздікті шешу.
2
Жауаптың жазылуы.
1
5
Туындының физикалық мағынасын есеп шығаруда қолдану.
Жылдамдықты табу.
1
5
Үдеуді табу.
1
Уақыттың теңдеуін жаз.
2
Дұрыс жауабын жазу.
1
Бақылау жұмысы№ 5
Тақырып: «Күрделі функцияның және тригонометриялық функциялардың туындылары.»
Мақсаты: -тақырып бойынша білім,білік,дағдысын меңгерту.
- тригонометриялық туындысының формуласын білу,
- күрделіфункцияның туындысының формуласын білу;
-теңдеуді және теңсіздіктітуынды арқылы шеше білу.
Нұсқа-1 Нұсқа-2
1. Функцияның туындысын табыңдар:
б) 𝑓𝑥= 𝑥2−6𝑥+52 в) 𝑓𝑥=𝑥2−2𝑥−3а) а)
б) б)
2.Теңдеуді шешіңдер: f''(x) = 0
f(x) = cos2 (x|4) – sin2(x|4) f(x) = 4sin(x|8) ٠cos(x|8)
3.Табыңдар:f '(х0), егер:
f(х) = (3х – 5)3 + 1/(3 – х)2,х0 = 2 f(х) = 1/(2х + 7)4 – (1 – х)3, х0 = -3
4.Есептеңдер: (f (g(x))'
f(x) = x2 – x и g(x) = 1|x f(x) = x2 – 4xи g(x) = √x
5. Тепе-теңдікті дәлелдеңдер:
Егер,g(x) = tg x + tg π егер,g(x) = ctg x + ctg π/2
𝑔′𝑥= 𝑔(𝑥)sin𝑥2 𝑔′𝑥= 𝑔(𝑥)cos𝑥
Бағалау критерийлері:
0-12 ұпай – «2»
13-17 ұпай – «3»
18-22 ұпай– «4»
23-25 ұпай– «5»
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
Тригонометриялық функциялардың туындысы.
№2
№5
40%
Күрделі функцияның туындысы.
№ 1
№ 3, 4
60%
барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
Күрделі функцияның туындысы.
Тригонометриялық функциялардың туындысы.
1
5
дифференциалдау ережесі.
1
Күрделі функияның туындысы.
2
Производная степенной функции
1
2
Күрделі функцияның туындысы.
Тригонометриялық өрнекті түрлендіру.
1
5
Тригонометриялық функциялардың туындысы.
1
Тригонометриялық теңдеуді шешу.
1
Күрделі функцияның туындысы.
2
3
Күрделі функцияның туындысы.
Теріс дәрежелі көршеткішті түрлендіру.
1
5
Дәрежелік функцияның туындысы.
1
Күрделі функцияның туындысы.
2
Есептеу.
1
4
Күрделі функция.
Күрделі функция құрастыру.
2
5
Дифференциалдау ережесі.
2
Дәрежелік функцияның туындысы.
1
5
Тригонометриялық функция және күрделі функцияның туындысы.
Тригонометриялық функцияның туындысы.
1
5
Тригонометриялық өрнекті түрлендіру.
1
Өрнекті дәлелдейтін алгоритмі
1
дифференцилдау ережесі
1
тригонометриялықфункциялардын мәндерін білу
1
Бақылау жұмысы№ 6
Тақырып:Туындыны функцияны зерттеуге қолдану.»
Мақсаты:тақырып бойынша білім,білік,дағдыларын меңгерту.
- Функцияның өсу және кему белгілерін білу.
- туындыны табу ережелері мен кестені қолдана білу;
- функцияның өсу мен кему меңгерту;
- функцияның ең үлкен және ең кіші мәндері табу.
Нұсқа-1 Нұсқа-2
1. y=f(x)функцияның, (-5; 7)аралығында туындының графигі кескіндеген.
y = f '(x).Функцияның максимум және минимум нүктелерін табыңдар.
2.Функциясының өсу немесе кему аралықтарын табыңдар:
f(x) = x3 – 3x2 + 4 f(x) = 3x2 – x4
3. Функцияны зерттеу және графигін салу:
y = x3 – 3x2 y = - ⅓ x3 + 4x
4.Функциясының кесіндісіндегі ең үлкен және ең кіші мәндерін табыңдар:
-8х2+1 , - 5х3+1,
5. 12 саның қандай екі оң қосылғышқа жіктегенде олардың біреуінің екіншісіне екі еселенген көбейтіндісінің кубыең үлкен болады.
64 саныңқандай екі қосылғышқа жіктегенде олардың біреуінің екіншісінің квадратына қосқанда ең кіші болады .
Бағалау критерийлері:
0-12 ұпай – «2»
13-16 ұпай – «3»
17-21 ұпай – «4»
22-23 ұпай– «5»
Тапсырмаларды мазмұны және қиындық деңгейі бойынша бөлу
Маңызды салалар Білімді еске түсіру
Білімді қолдану
Біріктіру
%-дық
арақатынасы
Функцияның ең үлкен және ең кіші мәндері.
№2
20%
Функцияның экстремумдары
№1
№4
40%
Функцияны зерттеу
№3
20%
Функцияның өсу және кему аралықтаря
№5
20%
Барлығы
40%
40%
20%
100%
Білім спецификациясы және бағалау критерийлері.
Тапсырма
сипаттамасы
Тексеру элементтері
Тексеру элементтерін орындаған үшін берілетін ұпай
Тапсырманы орындаған үшін берілетін ұпай
1
Функцияның экстремумдық шартты.
Функция экстремумының шарты
1
3
Экстремумының шартын білу.
1
Дұрыс жауабы.
1
2
Функцияның өсу және кему белгілері.
Функцияның өсу және кему белгілерін білу.
1
5
Туындыны табу
1
Интервал әдісін қолдану.
2
Жауабы.
1
3
Туындының көмегімен функцияны зерттеу.
Зерттеу кестесін білу.
1
5
Функцияның нөлдері.
1
Функцияның өсу және кему белгілерзні.
1
Кесте толдыру.
1
Функцияның графигін салу.
1
4
Функцияның ең үлкен және ең кіші мәні.
Алгоритмді білу.
1
5
Туындыны табу.
1
Теңдеуді шешу.
1
Экстремум нүктелері
1
жауабы
1
5
Берілген аралықтағы функцияның ең үлкен және ең кіші мәндерін табу,есептер шығаруға қолдана білу.
Айнымалыны енгізу
1
5
Функцияны құрастыру.
1
Туындыны табу.
1
Функцияның өсу және кему аралығын білу.
1
Жауабының жазылуы.
1