Тема: Нестандартные способы решения
показательных и логарифмических уравнений
и неравенств.(11 класс)
Сергеева Любовь Владимировна, МБОУ СОШ №37 г. Белгорода ,учитель математики 1 категории.
Цель урока: 1) систематизировать знания о некоторых нестандартных
способах решения, умение применять свойства функций,
правила при решении уравнений и неравенств;
2) развивать умение видеть, умение распознавать
рациональность применения того или иного способа;
3) прививать интерес к математике, воспитывать
математическую грамотность ученика, как при устной,
так и при письменной работе.
Оборудование: компьютер, мультимедийный проектор, экран.
На доске:
План урока:
1. Орг. момент.
2. Устная работа.
3.Работа в группах
4. Защита решений.
5. Сам. работа.
6. Задание на дом
7. Итог урока.
Ход урока:
I. Организационный момент.
1.Знакомство с целью урока;
задачами, стоящими перед учениками в ходе уроке.
2.Использование при решении задач :
– монотонности функций;
– «правила знаков»;
– метода оценки;
– освобождение от логарифма.
II. Устная работа.
1. Какие из выражений имеют смысл?
а [pic] ) [pic] а) да;
б) [pic] б) нет, т.к. [pic]
в) [pic] в) нет, т.к. [pic] а [pic]
г) [pic] г) да;
д) [pic] д) нет, т.к. [pic]
2. Решить уравнение:
[pic]
(Корень уравнения угадываем: х = 1. Докажем, что других корней нет. Левая часть – сумма возрастающих функций есть функция возрастающая; правая часть – постоянное число. Следовательно, уравнение имеет одно решение.)
3. Решить уравнение:
[pic] [pic] / : [pic]
( Корень уравнения угадываем: х = 2. Докажем, что других корней нет.
Разделим обе части уравнения на [pic]
[pic] [pic]
[pic] [pic] следовательно, в левой части уравнения – сумма двух убывающих показательных функций, правая часть – const. Следовательно, уравнение имеет одно решение.)
– Какое свойство функций мы использовали при решении этих уравнений?
(свойство монотонности)
III. Работа в группах. Решение задач.
1 группа. Решить уравнение:
[pic]
– Какой способ надо применить при решении данного уравнения?
Решение:
– Используем свойство монотонности убывающей функции, для этого
разделим на [pic]
[pic]
– Можем ли мы угадать хоть один корень?
( Можно угадать корень уравнения: х = 2.)
– Докажем единственность.
В левой части – сумма убывающих функций, в правой части – const. Следовательно, левая и правая части имеют одну точку пересечения:
[pic] точка пересечения, х=2.
значит, уравнение имеет одно решение,
Ответ: х = 2.
2 группа. Решить неравенство:
[pic]
– Применим теорему для функции f(f(x)).
– Сформулируем теорему:
Если функция у = f(x) – монотонно возрастающая функция, то уравнение
f(x)=x равносильно f(f(x)= x.
ОДЗ: [pic]
Решение:
– Выполним некоторые преобразования:
– вынесем в левой части за скобки 2, сократим:
[pic]
– приведем к общему знаменателю:
[pic]
– приведем подобные
[pic] т.к. [pic] , а [pic] , тогда
функция принимает вид [pic] , где [pic] - возрастающая функция, следовательно, по теореме имеем:
[pic]
[pic]
/ [pic] //////o o////// х
10
[pic]
– Учитывая ОДЗ, получим: [pic]
Ответ: 1 ≤ x < 5, x > 10.
3 группа. Решить неравенство:
– Решим неравенство методом оценки левой и правой частей
[pic] ;
Решение:
–Заметим, что [pic] .
[pic] ;
– Разделим обе части уравнения на положительное выражение [pic] , получим:
[pic] ;
– Выделим полный квадрат под радикалом и в показателе степени:
[pic] [pic] [pic] ;
не меньше 1 не больше 1
– Левая часть неравенства не меньше 1, а правая часть не больше 1.
– Неравенство выполняется тогда и только тогда, когда обе части неравенства будут равны 1, а равенство достигается при х = 3.
Ответ: х = 3.
4группа. Решить уравнение:
[pic] [pic] ;
Решение:
[pic] [pic] [pic] [pic] ;
немонотонная ф-я немонотонная ф-я
– Решим уравнение методом оценки;
– Один корень уравнения можно легко угадать, это х = 1.
– Преобразуем логарифмы в левой части;
[pic] ;
[pic] ;
Выделим полный квадрат в правой части;
[pic]
– Правая часть меньше или равна 1;
наибольшее значение правой части равно 1 при х=1;
– В левой части докажем, что выражение под знаком логарифма больше или равно 2: подведением под общую дробную черту, выделением полного квадрата
[pic]
[pic]
[pic]
– левая часть достигает своего наименьшего значения, равного 1 при х = 1.
– Равенство выполняется тогда и только тогда, когда обе части уравнения равны 1, а это произойдет при х = 1.
Ответ: х = 1.
5 группа. Решить неравенство:
[pic]
– Решим неравенство методом освобождения от логарифмов.
– Освободимся от логарифмов по правилу знаков:
Знак log a b совпадает со знаком произведения (а – 1)∙(в – 1).
Рассмотрим ОДЗ:
[pic] [pic]
Решение:
– Т.к. нас интересует только знак левой части, то от можно логарифмов
освободиться по правилу знаков:
[pic]
[pic]
[pic]
– Решим неравенство методом интервалов, рассмотрим функцию f(x):
[pic]
н [pic] айдем нули функции: [pic] нули функции [pic]
+ [pic] [pic] + +
[pic] //////o _ ο////////o////// х
½ 2 5
функция f(x) > 0 при [pic] учитывая ОДЗ, получим: [pic]
Ответ: [pic] [pic]
IV. Защита проектов.
От каждой группы выступает 1 человек с защитой своего решения (решение записать на ватмане).
V. Самостоятельная работа.
Решить уравнение:
I вариант. II вариант.
[pic] [pic]
Проверим решение уравнений по готовым записям на доске:
Решение: [pic]
при х=0 достигает унаим = 2
[pic] т.к. основание 0<0,1<1, то [pic] [pic]
наибольшее значение равное 2 может быть при х = 0.
Равенство возможно, когда обе части уравнения равны 2 при х = 0.
Ответ: [pic]
Решение:
[pic]
выделим полный квадрат под знаком log:
[pic]
а [pic]
Выделим полный квадрат в правой части:
[pic]
наименьшее значение равно 1 при [pic]
Обе части одновременно будут равны 1 при [pic]
Ответ: [pic]
Оценить самостоятельно (оценка на полях).
VI. Задание на дом.
1). Решить уравнение:
[pic]
2). Решить неравенство:
а) [pic]
б) [pic]
VII. Итог урока.
– Какие нестандартные способы решения мы использовали сегодня на уроке?
– Давайте посмотрим графические интерпретации этих способов.
На чем они основываются?
(Ответы: использование монотонности функции, использование правила знаков, метод оценки)