Контрольная работа №2 по теме «Параллельность в пространстве»
(геометрия 10 класс)
Ответить на вопросы:
(с 1 по 10 задание верный ответ оценивается в 1 балл)
Будут ли противоположные ребра AB и CD тетраэдра ABCD параллельны?
В пространстве даны прямая и не принадлежащая ей точка. Сколько прямых проходит через эту точку: а) параллельных данной прямой; б) не пересекающих данную прямую?
Верно ли утверждение: «Прямая, параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости»?
Даны две параллельные прямые. Через каждую из них проведена плоскость. Эти две плоскости пересекаются. Как расположена их линия пересечения относительно данных прямых?
Имеются ли параллельные грани у правильного тетраэдра?
Через каждую из двух параллельных прямых проведена плоскость. Верно ли утверждение, что эти плоскости параллельны?
В каком случае параллельной проекцией прямой будет точка?
Может ли параллельной проекцией прямоугольника быть: а) квадрат;
б) параллелограмм; в) ромб; г) трапеция?
Какой фигурой является сечение многогранника плоскостью?
Какие многоугольники можно получить в сечении четырехугольной пирамиды плоскостью?
Решить задачи:
1. Точка M не лежит в плоскости прямоугольника ABCD. Докажите, что прямая CD параллельна плоскости ABM.(2 б.)
2. Точка A не лежит в плоскости треугольника BDC, точки P, Q, R - середины отрезков AB, AC, AD соответственно.
а) Докажите, что плоскости BDC и PQR параллельны.
б) Найдите площадь треугольника BDC, если площадь треугольника PQR равна
16 см2. (3 б.)
3. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку M грани AA1B1B. Постройте сечение параллелепипеда, проходящее через точку M параллельно: а) плоскости основания ABCD; б) грани BB1C1C; в) плоскости BDD1.
(4 б.)