Рабочая программа по алгебре и геометрии 7 класс

Автор публикации:

Дата публикации:

Краткое описание: ...










в неделю 5 час.

Планирование составлено на основе:

Программы.Алгебра 7-9 классы.

Зубарева И.И., Мордкович А.Г., 2010г

Геометрия.7-9 классы.Бурмистрова Т.А.,2011г.


Учебники: А.Г.Мордкович и др.

Алгебра 7 класс. В 2 частях.,2013г.

Геометрия 7-9,Атанасян Л.С. и др.,2012г.

Мин.образования и науки РФ








Пояснительная записка

Рабочая программа по математике соответствует следующим документам:

- государственному образовательному стандарту;

-Программа. Алгебра 7-9 классы/автор-сост. И.И.Зубарева А.Г.Мордкович.-2-е изд.,испр. и доп.-М.:Мнемозина,2010.-63с.;

-Геометрия. Сборник рабочих программ.7-9классы:пособие для учителей общеобр. учреждений/составитель Т.А.Бурмистрова._М.:Просвещение,2011.-95с.

- федеральному перечню учебников.

Программа соответствует учебникам:

Алгебра. 7 кл.: В двух частях. Ч.1: Учебник для общеобразовательных учреждений/ - Мордкович А.Г.,Николаев Н.П.-6-е изд.,доп. –М.: Мнемозина, 2013. – 208 с.: ил.

Геомеитрия 7-9 классы. Учебник для общеобразовательных учреждений/[Л.С.Атанасян, В.Ф.Бутузов и др.]-15-еизд.-М.:Просвещение,

2012г.-384с.

Согласно федеральному базисному учебному плану на изучение математики в 7 классах отводится не менее 175 часов из расчета 5 часов в неделю (3 - алгебра, 2 - геометрия). Так как всего дается 35 недель в год, то 2 часа по алгебре отводится на повторение материала 7 класса.


Общая характеристика предмета.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно ёмком и значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра  нацелена  на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

    Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

     Рабочая программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами являются: использование для познания окружающего мира различных методов (наблюдения, измерения, эксперимент);использование для решения познавательных задач различных источников информации; соблюдение норм и правил здорового образа жизни.


Основной формой организации учебного процесса является классно-урочная система. В качестве дополнительных форм организации образовательного процесса по данной программе используется система консультационной поддержки, индивидуальных занятий, работа учащихся с использованием современных информационных технологий. Организация сопровождения учащихся направлена на:

  • создание оптимальных условий обучения;

  • исключение психотравмирующих факторов;

  • сохранение психосоматического состояния здоровья учащихся;

  • развитие положительной мотивации к освоению программы;

  • развитие индивидуальности и одаренности каждого ребенка.

Осуществление целей образовательной программы по алгебре для 7 класса обусловлено так же использованием в образовательном процессе следующих технологий: игровое моделирование (дидактические игры, работа в малых группах, работа в парах сменного состава); проблемное обучение; личностно ориентированное обучение.

В ходе реализации данной программы предусмотрены следующие виды и формы контроля: самостоятельные работы, тестирование, математические диктанты, контрольные работы. Формы учёта достижений это: проверка тетрадей по предмету, анализ текущей успеваемости, внеурочная деятельность- участие в олимпиадах, математических конкурсах.

Уровень подготовки обучающихся на конец учебного года соответствует требованиям, установленным федеральными государственными образовательными стандартами, образовательной программой образовательного учреждения.


Место учебного предмета

Из федерального компонента базисного учебного плана на изучение математики отводится не менее 175 часов из расчета 5 часов в неделю (3 - алгебра, 2 - геометрия)



Требования к уровню подготовки учащихся.


В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


В результате изучения алгебры в 7 классе ученик должен


Знать/понимать

существо понятия математического доказательства; приводить примеры доказательств;

существо понятия алгоритма; приводить примеры алгоритмов;

как используются математические формулы, уравнения, примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

уметь:

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования выражений;

  • решать линейные уравнения и сводящиеся к ним, системы двух линейных уравнений;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой; определять координаты точки плоскости, строить точки с заданными координатами;

  • строить графики изученных функций;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять простейшие свойства функции по ее графику; применять графические представления при решении уравнении, систем, описывать свойства изученных функций, строить их графики;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • интерпретации графиков зависимостей между величинами.



В результате изучения курса геометрии 7 класса обучающиеся должны:

знать/понимать

основные понятия геометрии;

признаки равенства треугольников;

определение и свойства параллельных прямых;

соотношения между сторонами и углами треугольника;

существо понятия математического доказательства; приводить примеры доказательств;

каким образом геометрия возникла из практических задач землемерия;

примеры геометрических объектов и утверждений о них, важных для практики.

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир


Содержание учебного предмета

Алгебра

  1. 1.Вводное повторение (2ч)

2. Математический язык. Математическая модель (13ч)

Числовые и алгебраические выражения. Переменная. Допустимое и недопустимое значение переменной. Первое представление о математическом языке и математической модели. Линейные уравнения с одной переменой. Линейные уравнения как математические модели реальных ситуаций.

Координатная прямая, виды промежутков на ней.

Основная цель: систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одной переменной.

Обучающиеся должны знать: понятие числового и алгебраического выражения, переменная, значения числового выражения, значение выражения с переменными.

Обучающиеся должны уметь: вычислять значение числового выражения; вычислять значение выражения с переменной при заданном ее значении; составлять математические модели реальных ситуаций( простейшие случаи); описывать реальные ситуации ,соответствующие заданной математической модели; реализовывать три этапа математического моделирования в простейших ситуациях.

3. Линейная функция (8ч)

Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М(а;b) в прямоугольной системе координат. Линейное уравнение с двумя переменными. Решение уравнения

ax+by+c=0. График уравнения. Алгоритм построения графика уравнения ax+by+c=0.Линейная функция. Независимая переменная(аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значение линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Линейная функция у=кх и ее график. Взаимное расположение графиков линейных функции.

Обучающиеся должны знать: определение функции; способы задания функции; определение линейной функции и прямой пропорциональности.

Обучающиеся должны уметь: работать с формулой функции; работать с графиком функции.

4.Степень с натуральным показателем (6ч)

Определение степени с натуральным показателем. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

Основная цель: выработать умение выполнять действия над степенями с натуральными показателями.

Обучающиеся должны знать: определение степени с натуральным показателем; свойства степеней.

Обучающиеся должны уметь: применять свойства степени; вычислять значения выражений, содержащих степени; пользоваться таблицей основных степеней; использовать свойства степени для вычисления арифметических и алгебраических выражений.

5. Одночлены. Операции над одночленами(7ч)

Одночлен; коэффициент одночлена; стандартный вид одночлена; подобные одночлены. Сложение, умножение, возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Основная цель: выработать умение выполнять действия с одночленами.

Обучающиеся должны знать: понятие одночлена и его стандартного вида, понятие подобных одночленов; термины « алгоритм», « корректные», «некорректные» задания.

Обучающиеся должны уметь: приводить одночлен к стандартному виду; складывать и вычитать подобные одночлены; умножать и возводить одночлен в натуральную степень; представлять заданный одночлен в виде суммы одночленов; в виде степени одночлена; делить одночлен на одночлен ( в корректных случаях).

6.Многочлены.Операции над многочленами (15ч)

Многочлен. Сложение и вычитание многочленов. Умножение одночлена на многочлен. Умножение многочленов. Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов сумма кубов. Метод выделения полного квадрата. Деление многочлена на многочлен.

Основная цель: выработать умение выполнять действия с многочленами, применять формулы сокращенного умножения для преобразования целых выражений в многочлены.

Обучающиеся должны знать: определение многочлена; правила сложения и вычитания многочленов; правило умножения одночлена на многочлен; правило умножения многочленов; формулы сокращенного умножения и их словесное описание.

Обучающиеся должны уметь: приводить многочлен к стандартному виду; выполнять действия с многочленами – сложение, вычитание, умножение;

Умножать многочлен на одночлен и многочлен; применять формулы сокращенного умножения; делить многочлен на одночлен.

7. Разложение многочленов на множители (18ч)

Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Понятие алгебраической дроби, сокращение алгебраической дроби. Тождество, тождественно равные выражения, тождественные преобразования.

Основная цель — выработать умение применять в несложных случаях формулы сокращенного умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Обучающиеся должны знать: понятие разложения многочлена на множители, тождества, тождественно равных выражений, формулы сокращенного умножения и их словесные формулировки.

Обучающиеся должны уметь: раскладывать многочлен на множители, применяя метод вынесения общего множителя за скобки, метод группировки, формулы сокращенного умножения как для преобразования произведения в многочлен (слева направо), так и для разложения на множители (справа налево), метод выделения полного квадрата.

8. Функции у = х 2 (9ч)

Функция у = х 2 и у = -х 2 ,их свойства и график. Графическое решение уравнений. Кусочная функция. Чтение графика функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи у=f(х). Функциональная символика.

Основная цель - познакомить учащихся с функциями у = х 2 и у = -х 2 , их свойствами и графиками, научить использовать при решении уравнений графический метод.

Обучающиеся должны знать: график функции у = х 2 , описание словами процесса графического решения уравнений и процесс построения графика кусочной функции, смысл функции у=f(х).

Обучающиеся должны уметь: вычислять конкретные значения и строить график функции у = х 2 строить графики функций, заданных различными формулами на различных промежутках; f(x)= g(x), где y=f(x) и y=g(x)- известные функции;yграфически решать уравнения вида находить наибольшее и наименьшее значение функции у = х 2 на заданном промежутке; читать графики; решать примеры на функциональную символику.

9. Системы двух линейных уравнений с двумя переменными (13ч)

Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки, метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций( текстовые задачи).

Основная цель: познакомить учащихся со способами решения систем линейных уравнений; выработать умение решать системы уравнений и применять их при решении текстовых задач.

Обучающиеся должны знать: понятие «линейное уравнение с двумя переменными»; определение корня уравнения с двумя переменными; способы решения систем;

Обучающиеся должны уметь: решать систему двух линейных уравнений с двумя переменными графическим способом, методом подстановки, методом алгебраического сложения; составлять системы уравнений при решении текстовых зада

10. Обобщающее повторение(14ч)


Геометрия

1.Начальные геометрические сведения (11ч) 

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель - систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

2.Треугольники (18ч)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Основная цель - ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач - на построение с по мощью циркуля и линейки.

3.Параллельные прямые (13ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель - ввести одно из важнейших понятий  понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

4.Соотношения между сторонами и углами треугольника (20ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Основная цель - рассмотреть новые интересные и важные свойства треугольников.

5.Повторение.Решение задач(8ч)





Учебно-тематический план

Алгебра

Наименование разделов и тем

Всего часов

В том числе

Контрольные работы

Уроки

Л/р, п/р, экскурсии

1.

Вводное повторение

2

2


-

2.

Математический

язык. Математическая модель

13

12


1

3.

Линейная функция

8

7


1

4.

Степень с натуральным показателем

6

6


-

5.

Одночлены. Операции над одночленами

7

6


1

6.

Многочлены.

Операции над многочленами

15

13


2

7.

Разложение многочленов на множители

18

16


2

8.

Функции у = х 2

9

8


1

9.

Системы двух линейных уравнений с двумя переменными

13

12


1

10.

Обобщающее повторение

14

13


1


Геометрия

Наименование разделов и тем

Всего часов

В том числе

Контрольные работы

Уроки

Л/р, п/р, экскурсии

1.

Начальные геометрические сведения

11

10


1

2.

Треугольники

18

17


1

3.

Параллельные прямые

13

12


1

4.

Соотношения между сторонами и углами треугольника

20

18


2

5.

Повторение.

Решение задач.

8

7


1

Календарно-тематическое планирование

7 класс «А»


8

Линейная функция


 

Координатная плоскость


 

Координатная плоскость


 

Линейное уравнение с двумя переменными и его график


 

Линейное уравнение с двумя переменными и его график


 

Линейная функция


 

Линейная функция


 

Взаимное расположение графиков линейных функций


 

Контрольная работа №2 по теме: «Линейная функция»

6

Степень с натуральным показателем и ее свойства


 

Что такое степень с натуральным показателем


 

Таблица основных степеней


 

Свойства степени с натуральным показателем


 

Свойства степени с натуральным показателем


 

Умножение и деление степеней с одинаковым показателем


 

Степень с нулевым показателем

7

Одночлены. Операции над одночленами


 

Понятие одночлена. Стандартный вид одночлена


 

Сложение вычитание одночленов


 

Умножение одночленов. Возведение одночлена в степень


 

Умножение одночленов. Возведение одночлена в степень


 

Деление одночлена на одночлен


 

Деление одночлена на одночлен


 

Контрольная работа №43по теме: «Одночлены. Арифметические операции над одночленами»

15

Многочлены. Операции над многочленами.


 

Основные понятия


 

Сложение и вычитание многочленов


 

Сложение и вычитание многочленов


 

Умножение многочлена на одночлен


 

Умножение многочлена на одночлен


 

Умножение многочлена на многочлен


 

Умножение многочлена на многочлен


 

Умножение многочлена на многочлен


 

Контрольная работа №4 по теме: «Многочлены. Операции над многочленами»


 

Формулы сокращенного умножения


 

Формулы сокращенного умножения


 

Формулы сокращенного умножения


 

Метод выделения полного квадрата


 

Деление многочлена на одночлен


 

Контрольная работа № 5 по теме: «Формулы сокращенного умножения»

18

Разложение многочленов на множители


 

Что такое разложение многочленов на множители и зачем оно нужно


 

Вынесение общего множителя за скобки


 

Вынесение общего множителя за скобки


 

Способ группировки


 

Способ группировки


 

Разложение многочлена на множители с помощью формул сокращенного умножения


 

Разложение многочлена на множители с помощью формул сокращенного умножения


 

Разложение многочлена на множители с помощью формул сокращенного умножения


 

Разложение многочлена на множители с помощью формул сокращенного умножения


 

Контрольная работа №6 по теме: «Разложение многочлена на множители»


 

Разложение многочлена на множители с помощью комбинации различных приемов


 

Разложение многочлена на множители с помощью комбинации различных приемов


 

Разложение многочлена на множители с помощью комбинации различных приемов


 

Сокращение алгебраических дробей


 

Сокращение алгебраических дробей


 

Сокращение алгебраических дробей


 

Тождества


 

Контрольная работа № 7 по теме: «Действия над многочленами. Тождества»


Функция y=х^2


 

Функция y=х^2 и ее график


 

Функция y=х^2 и ее график


 

Функция y=х^2 и ее график


 

Графическое решение уравнений


 

Графическое решение уравнений


 

Что означает в математике запись у=f(х)


 

Что означает в математике запись у=f(х)


 

Что означает в математике запись у=f(х)


 

Контрольная работа №8 по теме: «Функция y=х^2»


Системы линейных уравнений с двумя переменными


 

Основные понятия


 

Основные понятия


 

Метод подстановки


 

Метод подстановки


 

Метод подстановки


 

Метод алгебраического сложения


 

Метод алгебраического сложения


 

Метод алгебраического сложения


 

Системы линейных уравнений с двумя переменными как математические модели реальных ситуаций


 

Системы линейных уравнений с двумя переменными как математические модели реальных ситуаций


 

Системы линейных уравнений с двумя переменными как математические модели реальных ситуаций


 

Системы линейных уравнений с двумя переменными как математические модели реальных ситуаций


 

Контрольная работа № 9 по теме: «Системы двух линейных уравнений с двумя переменными»

14

Итоговое повторение


 

Повторение. Степень с натуральным показателем и ее свойства.


 

Итоговая контрольная работа


 

Повторение. Одночлены. Операции над одночленами


 

Повторение. Многочлены. Операции над многочленами


 

Повторение. Решение задач повышенной сложности.


 

Повторение. Решение задач повышенной сложности.

 

 

Повторение. Решение задач повышенной сложности.

 

 

Повторение. Решение задач повышенной сложности.


 

Повторение. Числовые и алгебраические выражения


 

Повторение. Числовые и алгебраические выражения


 

Повторение. Задачи на составление линейных уравнений с одной переменной


 

Повторение. Задачи на составление линейных уравнений с одной переменной


 

Повторение. Линейная функция


 

Повторение. Линейная функция

11

Начальные геометрические сведения

02.09

 

Прямая и отрезок.

03.09

 

Луч и угол.

09.09

 

Сравнение отрезков и углов.

10.09

 

Измерение отрезков.

16.09

 

Измерение отрезков.

17.09

 

Измерение углов.

23.09

 

Смежные и вертикальные углы

24.09

 

Перпендикулярные прямые.

30.09

 

Решение задач.

01.10

 

Решение задач

07.10

 

Контрольная работа №1по теме: «Начальные геометрические сведения»

18

Треугольники

08.10

 

Треугольники

14.10

 

Первый признак равенства треугольников

15.10

 

Первый признак равенства треугольников

21.10

 

Медиана, биссектрисы и высоты треугольников.

22.10

 

Свойства равнобедренного треугольника.

28.10

 

Свойства равнобедренного треугольника.

29.10

 

Второй признак равенства треугольников.

11.11

 

Второй признак равенства треугольников.

12.11

 

Третий признак равенства треугольников.

18.11

 

Решение задач на применение признаков равенства треугольников

19.11

 

Решение задач на применение признаков равенства треугольников

25.11

 

Решение задач на применение признаков равенства треугольников

26.11

 

Окружность.

02.12

 

Построение циркулем и линейкой. Задачи на построение.

03.12

 

Задачи на построение.

09.12

 

Решение задач

10.12

 

Обобщающий урок по теме "Треугольники". Решение задач.

16.12

 

Контрольная работа №2 по теме: «Треугольники.»

13

Параллельные прямые

17.12

 

Признаки параллельности двух прямых.

23.12

 

Признаки параллельности двух прямых.

24.12

 

Практические способы построения параллельных прямых.

13.01

 

Решение задач по теме: «Признаки параллельности прямых»

14.01

 

Об аксиомах геометрии. Аксиома параллельных прямых.

20.01

 

Свойства параллельных прямых

21.01

 

Свойства параллельных прямых

27.01

 

Решение задач.

28.01

 

Решение задач.

03.02

 

Решение задач.

04.02

 

Решение задач.

10.02

 

Обобщающий урок по теме "Параллельные прямые". Решение задач.

11.02

 

Контрольная работа №3 по теме: «Параллельные прямые.»

20

Соотношения между сторонами и углами треугольника

17.02

 

Сумма углов треугольника.

18.02

 

Сумма углов треугольника.

24.02

 

Соотношение между сторонами и углами треугольника.

25.02

 

Соотношение между сторонами и углами треугольника.

02.03

 

Неравенство треугольника

03.03

 

Решение задач

09.03

 

Решение задач

10.03

 

Контрольная работа №4 по теме:«Сумма углов треугольника»

16.03

 

Прямоугольные треугольники и некоторые их свойства

17.03

 

Решение задач на применение свойств прямоугольного треугольника

23.03

 

Признаки равенства прямоугольных треугольников

06.04

 

Прямоугольный треугольник. Решение задач.

07.04

 

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

13.04

 

Построение треугольника по трем элементам.

14.04

 

Построение треугольника по трем элементам.

20.04

 

Задачи на построение

21.04

 

Решение задач

27.04

 

Решение задач

28.04

 

Обобщающий урок по теме "Соотношение между сторонами и углами".

04.05

 

Контрольная работа №5 по теме: «Соотношение между сторонами и углами»

8

Повторение курса геометрии за 7 класс

05.05

 

Повторение. Признаки равенства треугольников.

11.05

 

Повторение. Параллельные прямые.

12.05

 

Повторение. Соотношение между сторонами и углами треугольника.

18.05

 

Повторение. Прямоугольный треугольник и его свойства

19.05

 

Итоговая контрольная работа

25.05

 

Повторение. Задачи на построение.

26.05

 

Повторение. Задачи на построение.


 

Решени задач

































Список литературы


1. Учебник: Алгебра 7. в 2 ч./ А.Г. Мордкович, Н.П.Николаев.-6-е изд., доп.-М.:Мнемозина,2013-208с.:ил.

2. Программа. Алгебра 7-9 классы/автор-сост. И.И.Зубарева А.Г.Мордкович.-2-е

изд.,испр. и доп.-М.:Мнемозина,2009.-63с.

3. А.Г. Мордкович. Преподавание алгебры в 7 классе по учебнику А.Г. Мордковича, Н.П.Николаева: методическое пособие для учителя.

4. Л.А.Александрова . Алгебра 7 класс. Самостоятельные работы :к учебнику А.Г.Мордковича, Н.П.Николаева/под ред. Мордковича,2013г.

5. Контрольные работы 7-9 класс к учебнику А.Г. Мордковича, Н.П.Николаева

6. Алгебра 7 "Контрольные работы в новом формате" Л.Б. Крайнева М: Интелект-Центр 2011 г.

7. Геометрия: учебник для 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др. — М.: Просвещение, 2012 г

8. Т.А. Бурмистрова "Программы общеобразовательных учреждений. Геометрия. 7-9 классы" М: Просвещение 2009 год

9. Б.Г. Зив, В.М. Мейлер «Геометрия. Дидактические материалы. 7 класс» М.: Издательство «Экзамен», 2011

10. Н.Ф. Гаврилова. Поурочные разработки по геометрии. 7 класс. М.: ВАКО, 2010г.