Рабочая программа по математике 11 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Муниципальное образование – городской округ

(учредитель)

города Рязани Рязанской области

(город)

МБОУ «Школа №58» имени Героя Российской Федерации гвардии капитана Орлова Сергея Николаевича

(полное наименование образовательной организации)














РАБОЧАЯ ПРОГРАММА


по математике

(указать учебный предмет)


Уровень образования (класс) 11А

(основное общее образование с указанием классов)


Количество часов 204


Учитель: Ткачева Марина Николаевна











Программа разработана на основе Примерной программы по математике среднего (полного) общего образования: Сборник «Программы общеобразовательных учреждений: Алгебра и начала математического анализа. 10-11 кл.»/ Сост. Т.А.Бурмистрова.- М. Просвещение. – 2010г; Сборник «Рабочие программы по геометрии:7-11 классы/Сост. Н.Ф. Гаврилова – М.ВАКО, 2011г.

(указать примерную или авторскую программу/программы, издательство, год издания)


Рабочая программа по математике для 11 класса


Рабочая программа по математике ориентирована на учащихся 11 классов и составлена на основании следующих документов:

1. Федеральный закон «Об образовании в Российской Федерации» п. 2 ст. 32. (приказ №273-ФЗ от 29 декабря 2012 г.)

2. Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования по математике, (М.: Просвещение, 2010 г.).

3. Концепция духовно-нравственного развития и воспитания личности гражданина России (М.: Просвещение, 2009 г.)

4. Примерной программы по математике среднего (полного) общего образования: Сборник «Программы общеобразовательных учреждений: Алгебра и начала математического анализа. 10-11 кл.»/ Сост. Т.А.Бурмистрова.- М. Просвещение. – 2010г; Сборник «Рабочие программы по геометрии:7-11 классы/Сост. Н.Ф. Гаврилова – М.ВАКО, 2011г.

5. Базисный учебный план МБОУ «Школа №58» (на 2016-2017 учебный год).

6. Федеральный перечень учебников, утверждённых, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных организациях, реализующих программы общего образования (приказ от 31 марта 2014 года №253)


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

В результате изучения математики на базовом уровне ученик должен

  • понимать значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • понимать значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • знать универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности.


Общая характеристика учебного предмета

При изучении курса математики на базовом уровне в 11 классе продолжаются и получают развитие содержательные линии: «Геометрия», «Алгебра», «Функции», «Уравнения и неравенства», «Начала математического анализа», вводится линия «Элементы комбинаторики, статистики и теории вероятностей».

Курс математики характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа и стереометрии, выявлением их практической значимости. При изучении вопросов математики широко используются наглядные соображения; уровень строгости изложения определяется с учетом общеобразовательной направленности изучения математики и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса является систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе средней школы, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.

Учащиеся систематически изучают степенные, показательные, логарифмические, тригонометрические функции и их свойства; приобретают навыки тождественных преобразований логарифмических, степенных и тригонометрических выражений и их применения к решению соответствующих уравнений и неравенств; знакомятся с основными понятиями, утверждениями и аппаратом математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи; приобретают систематические сведения об основных видах пространственных тел и их свойства, знакомятся с теоретическим обоснованием методов изображения пространственных тел на плоскости, овладевают умениями вычислять значения геометрических величин.

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 204 часов из расчета 6 часа в неделю, в том числе 4 часа в неделю на изучение алгебры и начала анализа и 2 часа в неделю на изучение геометрии ( 134 часа на алгебру и начала анализа и 68 часов на геометрию). При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре и началам анализа и геометрии. Удовлетворительная оценка по учебному предмету «Математика» ставится при удовлетворительных оценках по разделу «Алгебра» и «Геометрия» (Письмо Министерства образования Рязанской области от 05.09.2014).

При реализации рабочей программы используется УМК Ш.А.Алимова, Ю.М. Калягина, М.В.Ткачевой, и др. Алгебра и начала математического анализа, 10-11классы, Л.С. Атанасяна, В.Ф. Бутузова, С.Б.Кадомцева и др. Геометрия, 10–11 классы. Для изучения курса рекомендуется классно-урочная система с использованием различных технологий, форм, методов обучения. Промежуточная аттестация проводится в виде тестов, самостоятельных и проверочных работ в конце логически законченных блоков учебного материала. Контроль по итогам темы планируется в виде контрольной работы. Итоговая аттестация предусмотрена в виде контрольного теста.


Обязательное содержание

Алгебра и начала анализа


  1. Производная и ее геометрический смысл.

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций.

.

  1. Применение производной к исследованию функции.

Применение производной к исследованию функций и построению графиков. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.



  1. Интеграл.

Определение первообразной. Основное свойство первообразной. Три правила нахождения первообразной. Площадь криволинейной трапеции. Интеграл. Формула Ньютона-Лейбница. Применение интеграла.


  1. Комбинаторика.

Перестановки. Размещения. Сочетания. Правило произведения. Бином Ньютона


  1. Элементы теории вероятностей. Статистика.

События, комбинация событий. Противоположное событие. Вероятность событий. Сложение вероятностей. Независимые события. Умножение вероятностей. Статистическая вероятность. Случайные величины. Центральные тенденции. Меры разброса.


Геометрия


1. Метод координат в пространстве (11 часов).

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.


2. Цилиндр, конус и шар (13 часов).

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.



3. Объёмы тел (15 часов).

Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.


Обобщающее повторение курса алгебры и начала анализа и геометрии за 10-11 класс


Требования к уровню подготовки учащихся

В результате изучения алгебры в 11 классе ученик должен овладеть учебными компетенциями, позволяющими:

  • выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы, используя при необходимости справочные материалы и простейшие вычислительные устройства;

функции и графики

  • уметь определять значение функции по значению аргумента при различных способах задания функции;

  • уметь строить графики изученных функций;

  • уметь описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

начала математического анализа


  • уметь вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • уметь исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • вычислять в простейших случаях площади с помощью первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

уравнения и неравенства

  • уметь решать показательные, логарифмические, иррациональные уравнения и неравенства, их системы;

  • уметь составлять уравнения и неравенства по условию задачи;

  • уметь использовать для приближенного решения уравнений и неравенств графический метод;

  • уметь изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;

элементы комбинаторики, статистики и теории вероятностей

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера.



В результате изучения геометрии в 11 классе ученик должен овладеть учебными компетенциями, позволяющими:

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями;

  • раз­личать и анализировать взаимное расположение фигур;

  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

  • решать геометрические задачи, опираясь на изученные свой­ства планиметрических и стереометрических фигур и отноше­ний между ними, применяя алгебраический и тригонометри­ческий аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;

  • строить сечения многогранников и изображать сечения тел вращения;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования ( моделирования ) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.




Тематическое планирование учебного материала

темы


Наименование разделов и тем

Кол-во

часов

Контр.

работа

1

Повторение

10

1

2

Производная и ее геометрический смысл.

19

1

3

Метод координат в пространстве

13

1

4

Применение производной к исследованию функции

19

1

5

Цилиндр, конус, шар

17

1

6

Первообразная. Интеграл.

15

1

7

Объемы тел

23

2

8

Элементы комбинаторики и теории вероятностей. Статистика

17

1

9

Текстовые задачи

18

1

12

Итоговое повторение

56

2

Поурочное планирование

п/п

Дата

Тема

Характеристика видов деятельности

Практ. лабор. работы

П

Ф




1 четверть



1

1.09


Повторение: Степень

решать иррациональные уравнения; показательные уравнения и неравенства; тригонометрические уравнения; преобразовывать тригонометрические выражения, используя формулы; вычислять логарифмы и степень; решать задачи на вычисление элементов пирамиды и параллелепипеда.


2

2.09


Повторение: Иррациональные уравнения и неравенства


3-4

5.09


Повторение: Показательные уравнения и неравенства


5-6

5.09

6.09


Повторение: Логарифм. Логарифмические уравнения и неравенства


7

7.09


Повторение: Тригонометрические функции. Тригонометрические формулы и выражения.


8-9

8-9.09


Повторение: Тригонометрические уравнения


10

12.09


Повторение: Параллелепипед. Пирамида


11

12.09


Входная контрольная работа





Производная и ее геометрический смысл 19 ч.


12

13.09


Производная

находить приращение ар­гумента и приращение функции в точке;

находить производные функций;

исследовать функции на непрерывность;

применять правила диф­ференцирования; находить производные сложных функции;

находить производные тригонометрических, логарифмических, показательных функций


13

14.09


Производная


14

15.09


Производная


15

16.09


Производная степенной функции


16

19.09


Производная степенной функции


17

19.09


Производная степенной функции


18

20.09


Правила дифференцирования


19

21.09


Правила дифференцирования


20

22.09


Правила дифференцирования


21

23.09


Производные некоторых элементарных функций


22

26.09


Производные некоторых элементарных функций


23

26.09


Производные некоторых элементарных функций


24

27.09


Геометрический смысл производной

составлять уравнение ка­сательной к графику функции, определять приближенные значения функций в конкретных точках; решать задачи на примене­ние механического и геометриче­ского смысла производной; формировать представление о различных типах тестовых заданий, которые включаются в егэ по математике по данной теме.



25

28.09


Геометрический смысл производной


26

29.09


Геометрический смысл производной


27

30.09


Геометрический смысл производной


28

3.10


Обобщение и решение задач


29

3.10


Обобщение и решение задач


30

4.10


Контрольная работа «Производная и ее геометрический смысл»






Метод координат в пространстве 13 ч.


31

5.10


Прямоугольная система координат в пространстве

Повторить понятие координатных осей, начала координат, начала координат, координатных плоскостей; Рассмотреть понятие симметрии относительно точки, прямой, плоскости. Изучить понятие угла между прямыми, скрещивающимися прямыми, прямой и плоскости, плоскостями.

Изучить понятие вектора в пространстве, координат вектора; рассмотреть правила сложения, вычитания векторов, умножения вектора на число, скалярное произведение векторов;


32

6.10


Координаты вектора


33

7.10


Координаты вектора


34

10.10


Связь между координатами вектора и координатами точек


35

10.10


Простейшие задачи в координатах


36

11.10


Угол между векторами


37

12.10


Скалярное произведение векторов


38

13.10


Вычисление углов между прямыми и плоскостями


39

14.10


Вычисление углов между прямыми и плоскостями


40

17.10


Решение задач по теме «Скалярное произведение векторов»


41

17.10


Осевая и центральная симметрия


42

18.10


Решение задач по теме «Метод координат в пространстве»


43

19.10


Контрольная работа по теме «Пирамида»






Применение производной к исследованию функции 19 ч.


44

20.10


Возрастание и убывание функции

применять метод интерва­лов; решать задачи на примене­ние механического и геометриче­ского смысла производной функций;

находить критические точ­ки функций; применять теорему Ферма;

исследовать функции и строить графики с помощью производной;

применять теорему Вейерштрасса;

находить наибольшее и наименьшее значение непрерывной функции на промежутке



45

21.10


Возрастание и убывание функции


46

24.10


Возрастание и убывание функции


47

24.10


Экстремумы функции


48

25.10


Экстремумы функции


49

26.10


Экстремумы функции


50

27.10


Применение производной к построению графиков функции


51

28.10


Применение производной к построению графиков функции





2 четверть


52

7.11


Применение производной к построению графиков функции


53

7.11


Применение производной к построению графиков функции


54

8.11


Наибольшее и наименьшее значение функции


55

9.11


Наибольшее и наименьшее значение функции


56

10.11


Наибольшее и наименьшее значение функции


57

11.11


Наибольшее и наименьшее значение функции


58

14.11


Наибольшее и наименьшее значение функции


59

14.11


Наибольшее и наименьшее значение функции


60

15.11


Обобщение и решение задач


61

16.11


Обобщение и решение задач


62

17.11


Контрольная работа по теме

« Применение производной к исследованию функции»












Цилиндр, конус, шар 17ч.


63

18.11


Понятие цилиндра

Рассмотреть понятие цилиндра, конуса, усеченного конуса, сферы и шара, шарового сегмента и их элементов; рассмотреть понятие призмы вписанной в цилиндр и описанной около цилиндра; понятие пирамиды, вписанной в конус и описанной около конуса; изучить свойства тел вращения; построение сечений тел вращения; касательная плоскость; понятие многогранников, вписанных в шар и описанных около шара; решать задачи на вычисление элементов тел вращения.


64

21.11


Площадь поверхности цилиндра


65

21.11


Решение задач по теме «Понятие цилиндра. Площадь поверхности цилиндра»


66

22.11


Понятие конуса


67

23.11


Площадь поверхности конуса


68

24.11


Усеченный конус


69

25.11


Конус. Решение задач


70

28.11


Сфера и шар


71

28.11


Взаимное расположение сферы и плоскости. Касательная плоскость к сфере


72

29.11


Площадь сферы


73

30.11


Решение задач по теме «Сфера»


74

1.12


Решение задач на многогранники, цилиндр, шар и конус


75

2.12


Решение задач на многогранники, цилиндр, шар и конус


76

5.12


Решение задач на многогранники, цилиндр, шар и конус


77

5.12


Обобщающее повторение по теме «Цилиндр, конус, шар»


78

6.12


Урок обобщения и коррекции знаний


79

7.12


Контрольная работа по теме «Цилиндр, конус, шар»





Первообразная . Интеграл. 15 ч.


80

8.12


Первообразная

Изучить понятие первообразной, ее основного свойства; рассмотреть правила вычисления первообразных; вычислять первообразные с помощью таблицы первообразных; установить связь между площадью криволинейной трапеции и первообразной; изучить понятие интеграла и его применение для вычисления площади криволинейной трапеции; рассмотреть формулу Ньютона - Лейбница и применять ее при решении задач на вычисление площадей.


81

9.12


Первообразная


82

12.12


Правила нахождения первообразных


83

12.12


Правила нахождения первообразных


84

13.12


Площадь криволинейной трапеции


85

14,12


Площадь криволинейной трапеции


86

15.12


Интеграл


87

16.12


Вычисление интегралов


88

19.12


Вычисление площадей с помощью интегралов


89

19.12


Вычисление площадей с помощью интегралов


90

20.12


Применение производной и интеграла к решению практических задач.


91

21.12


Применение производной и интеграла к решению практических задач.


92

22,12


Обобщение и решение задач


93

23.12


Обобщение и решение задач


94

26.12


Контрольная работа «Первообразная. Интеграл»





Объемы тел 23 ч.



95

26.12


Понятие объема. Объем прямоугольного параллелепипеда

Рассмотреть понятие объема, равновеликих тел. Вывод формул для вычисление объемов призмы, параллелепипеда, пирамиды; применение формул объема при решении задач; доказательство того, что объемы подобных тел относятся как кубы их соответствующих линейных размеров.


96

27,12


Объем прямоугольного параллелепипеда





3 четверть


97



Решение задач по теме «Объем прямоугольного параллелепипеда»


98



Объем прямой призмы


99



Объем цилиндра


100



Решение задач по теме «Объем прямой призмы и цилиндра»


101



Вычисление объемов тел с помощью определенного интеграла


102



Объем наклонной призмы


103



Объем пирамиды


104



Объем пирамиды


105



Решение задач по теме «Объем пирамиды»


106



Объем конуса.


107



Решение задач по теме «Объем конуса»


108



Урок обобщающего повторения «Объем пирамиды и конуса»



109



Контрольная работа «Объемы тел»



110



Объем шара

Вывод формул для вычисления площадей поверхности и объемов тел вращения; применение формул при решении задач на вычисление площадей и объемов.


111



Объем шарового сегмента, Шарового слоя, Шарового сектора


112



Объем шара и его частей. Решение задач


113



Площадь сферы


114



Решение задач на многогранники, цилиндр, конус, шар


115



Решение задач на многогранники, цилиндр, конус, шар


116



Урок обобщающего повторения по теме «Объем шара и площадь сферы»


117



Контрольная работа «Объем шара и площадь сферы»












Элементы теории вероятностей 15 ч.


118



Комбинаторные задачи



119



Правило произведения



120



Перестановки

Выполнять выбор всех возможных вариантов для пересчета объектов и комбинаций. Применять правило комбинаторного умножения. Распознавать задачи на вычисление числа перестановок, размещений, сочетаний и применять соответствующие формулы. Вычислять относительную частоту случайных событий. Оценивать вероятность случайных событий. Находить вероятность случайных событий на основе классического определения вероятности.


121



Размещения


122



Сочетания


123



Бином Ньютона


124



Понятие вероятности событий


125



Сложение вероятностей


126



Вероятность противоположного события


127



Условная вероятность


128



Независимые события


129



Вероятность произведения независимых событий


130



Контрольная работа по теме «Элементы комбинаторики и теории вероятностей».



131



Случайные величины



132



Центральные тенденции. Меры разброса






Текстовые задачи 18 ч



133



Решение задач на движение

Рассмотреть типовые задачи на движение, работу, смеси и сплавы; рассмотреть производственные и бытовые задач, кредиты и вклады.


134



Решение задач на движение по реке


135



Решение задач на выполнение плановых заданий


136



Решение задач на смеси и сплавы


137



Решение задач на смеси и сплавы


138



Решение задач на смеси и сплавы


139



Решение задач на проценты


140



Решение задач на проценты


141



Решение задач на проценты


142



Решение задач на кредиты и вклады


143



Решение задач на кредиты и вклады


144



Решение задач на кредиты и вклады


145



Решение производственных и бытовых задач


146



Решение производственных и бытовых задач


147



Задачи на нахождение экстремума


148



Задачи на нахождение экстремума


149



Задачи с экономическим содержанием


150



Контрольная работа по теме «Текстовые задачи»






Итоговое повторение 55 ч.


151



Повторение



152



Повторение



153



Повторение






4 четверть



154-192



Повторение



193-195



Тренировочные работы ЕГЭ по тестам СтатГрад



196-198



Тренировочные работы ЕГЭ по тестам СтатГрад



199-201



Тренировочные работы ЕГЭ по тестам СтатГрад



202-204



Тренировочные работы ЕГЭ по тестам СтатГрад












Учебно – методический комплект


  1. Алгебра и начала математического анализа 10-11классы; Учебник для общеобразовательных учреждений/ под редакцией А.Н. Колмогорова, М. Просвещение с 2010 г.

  2. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ А.В. Погорелов, М. Просвещение, с 2011 г.

  3. Гусева И.Л., Пушкин С.А. «Сборник тестовых заданий для тематического и итогового контроля. Алгебра и начала анализа. 10-11 классы М. Интеллект-Центр 2012 г.

  4. Ершова А.П., Голобородько В.В. « Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 класса»

  5. Ершова А.П., Голобородько В.В. « Самостоятельные и контрольные работы по геометрии для 10 класса»

  6. Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2001.

  7. Рабинович Е.М. «Задачи и упражнения на готовых чертежах». 10-11 классы. Геометрия. «Илекса» Москва-Харьков, 2005 г.

  8. Единый государственный экзамен 2015-2016. Математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.:Интеллект-Центр, 2015.

  9. Научно-теоретический и методический журнал «Математика в школе»

  10. Математика, Первое сентября. методическая газета для учителей математики