Алгебра 10 класс работа в парах Формулы приведения

Автор публикации:

Дата публикации:

Краткое описание: ...


Формулы приведения.

_____________________________________ ___________________________________



любое выражения вида n/2 + t), (Пn/2 - t), то функция меняется на родственную (sint на cost, tgt на ctgt и на оборот)

sin(3П/2 + t)= - cos t

  1. cos

  2. (3П/2 + t) – четвертая четверть

  3. sin отрицательный

  4. - cos t

1. если под знаком тригонометрической функции содержится

любое выражения вида n + t), (Пn - t), то функция не меняется на родственную, т.е. остается той же.

cos(П - t)= .- cos t

1. cos

2.(П – t) – вторая четверть

3.cos отрицательный

4.- cos t

-

2..находим какой четверти принадлежит аргумент t ( он всегда меньше 90 градусов)

3.. какой знак имеет преобразуемая функция в этой четверти

4.. ставим найденный знак, полученную тригонометрическую функцию, аргумент .


Заполнить таблицу пользуясь алгоритмом









cos










tg










ctg










t

(90+t)

(90-t)

(270+ t)

(270 - t)

(180+t)

(180-t)

(360 + t)

(360 - t)

sin










cos










tg










ctg











Упростить выражение:


1) sin(90-t)+ cos(180+t)+ tg(270+ t)+ ctg(360 + t)=


2) sin(П/2+t)- cos(П-t)+ tg(П-t)+ ctg(5П/2-t)=


3) cos(180+t) cos(-t)

sin(-t) sin(90+t)