Рабочая программа по алгебре 9 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Государственное общеобразовательное учреждение Тульской области

«Киреевская школа для детей-сирот и детей,

оставшихся без попечения родителей».


Рассмотрена на заседании

МО учителей

естественно-математического цикла

__________/Л.А.Дрофа/

протокол № 1 от 29.08.2016г

Согласовано

Зам. директора по УВР:

________/Н.И.Алексеева/

« 29 » августа 2016г.

Утверждаю:

Директор школы:

_________/А.М.Аксенов/

« 31 » августа 2016г








Рабочая программа

по алгебре



для 9 класса




срок реализации: 1 год



Учитель: Прохваткина

Светлана Николаевна







2016-2017 учебный год



ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа по алгебре для 9 класса разработана на основе Примерной программы основного общего образования по математике с учетом требований федерального компонента Государственного образовательного стандарта основного общего образования по математике с использованием рекомендаций авторской программы Ю.Н.Макарычева. (Программа по алгебре, авт. Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, в сборнике «Алгебра. Программы общеобразовательных учреждений. 7-9 классы. Составитель Т.А.Бурмистрова, изд. «Просвещение», 2011 г.)

Рабочая программа рассчитана на 102 часа, 3 часа в неделю

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников.


СОДЕРЖАНИЕ КУРСА АЛГЕБРЫ

(3 часа в неделю, всего 102 часа)

1. Свойства функций. Квадратичная функция (22 часа)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Степенная функция.

Основная цель - расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функций у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

2. Уравнения и неравенства с одной переменной (14 часов)

Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель - систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной. Сформировать умение решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Обучающиеся знакомятся с некоторыми специальными приёмами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, её расположение относительно оси ОХ).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

3. Уравнения и неравенства с двумя переменными. (17 часов)

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель - выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

4. Прогрессии (15 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель - дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий. Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

5. Элементы комбинаторики и теории вероятностей (13 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель - ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение (21 час)

В начале учебного года 4 часа вводного повторения. В конце учебного года на повторение курса алгебры 9 класса - 17 часов.


ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

В результате изучения алгебры, элементов логики, комбинаторики, статистики и теории вероятностей ученик должен:

Уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;



Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.


Учебно-методический комплект

  1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

  2. Примерная программа общеобразовательных учреждений по алгебре 7–9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2011)

  3. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2009 год.

  4. Изучение алгебры в 7—9 классах/ Ю.Н. Макарычев, Н. Г. Миндюк, С.Б. Суворова..— М.: Просвещение, 2005—2008.

  5. Алгебра: дидакт. материалы для 9 кл. / Л.И. Звавич, Л.В. Кузнецова, С.Б» Суворова. — М.: Просвещение, 2007—2008.

  6. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2007г.


Дополнительная литература:

  1. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 9 классе - М.: «Вербум - М», 2000;

  2. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;

  3. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2006.

Календарно-тематическое планирование учебного материала по алгебре

по учебнику Макарычева Ю. Н., Алгебра: учебник для 9 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2014 г

9 класс - 3 часа в неделю, всего 102 ч.


Содержание учебного материала

Кол-во часов

Дата

1

Повторение по теме «Преобразование выражений»

1


2

Повторение по теме «Уравнения»

1


3

Повторение по теме «Неравенства»

1


4

Входное диагностическое тестирование

1



Глава I. Квадратичная функция (22 ч)




§1. Функции и их свойства.



5

Анализ тестирования.

п.1 Функция.

1


6

Область определения функции.

1


7

Область значений функции.

1


8

п.2 Свойства функции.

1


9

Решение упражнений по теме: «Функция и ее свойства».

1



§2. Квадратный трёхчлен.



10

п.3 Квадратный трехчлен и его корни.

1


11

Выделение квадрата двучлена из квадратного трехчлена.

1


12

п.4 Разложение квадратного трехчлена на множители.

1


13

Применение разложения квадратного трехчлена на множители

1


14

Контрольная работа №1 по теме «Функция. Квадратный трёхчлен».

1



§3. Квадратичная функция и её график.



15

Анализ контрольной работы.

п.5 Функция .

1


16

График функции .

1


17

Свойства функции .

1


18

п.6 График функции +n.

1


19

График функции у = а(х –m)2.

1


20

п.7 Функция у = ах2+вх+с, её свойства и график.

1


21

Чтение графика квадратичной функции.

1


22

Решение упражнений по теме «Квадратичная функция»

1



§4. Степенная функция. Корень n-й степени.



23

п.8 Степенная функция у=х n

1


24

п.9 Корень n-й степени.

1


25

Решение упражнений по теме: «Степенная функция. Корень n-й степени».

1


26

Контрольная работа №2 по теме «Квадратичная функция»

1



Глава II. Уравнения и неравенства с одной переменной (14 ч.)




§5. Уравнения с одной переменной.



27

Анализ контрольной работы.

п.12 Целое уравнение и его корни.

1


28

Решение целых уравнений методом введения новой переменной

1


29

Решение биквадратных уравнений.

1


30

Решение целых уравнений.

1


31

п.13 Дробные рациональные уравнения.

1


32

Решение дробных рациональных уравнений.

1


33

Решение уравнений.

1


34

Самостоятельная работа по теме «Решение уравнений».

1


35

п.16 Некоторые приёмы решения целых уравнений.

1



§6. Неравенства с одной переменной.

1


36

п.14 Неравенства второй степени с одной переменной.

1


37

Решение неравенств второй степени с одной переменной.

1


38

п.15 Метод интервалов.

1


39

Решение неравенств методом интервалов

1


40

Контрольная работа №3 по теме «Уравнения и неравенства с одной переменной».

1



Глава III. Уравнения и неравенства с двумя переменными (17 ч.)




§7. Уравнения с двумя переменными и их системы.



41

Анализ контрольной работы.

п.17 Уравнение с двумя переменными и его график.

1


42

График уравнения с двумя переменными.

1


43

п.18 Графический способ решения систем уравнений.

1


44

Решение систем уравнений графическим способом.

1


45

п.19 Системы уравнений второй степени.

1


46

Решение систем, содержащих одно уравнение первой, а другое второй степени

1


47

Самостоятельная работа по теме «Решение систем уравнений».

1


48

п.20 Решение задач с помощью систем уравнений второй степени.

1


49

Решение задач на движение с помощью систем уравнений второй степени

1


50

Решение задач на работу с помощью систем уравнений второй степени.

1


51

Решение задач на проценты.

1


52

Самостоятельная работа по теме «Решение задач с помощью систем уравнений».

1



§8. Неравенства с двумя переменными и их системы.



53

п.21 Неравенства с двумя переменными.

1


54

Решение неравенств с двумя переменными.

1


55

п.22 Системы неравенств с двумя переменными.

1


56

Решение систем неравенств с двумя переменными.

1


57

Контрольная работа №4 по теме «Уравнения и неравенства с двумя переменными»

1



Глава IV. Арифметическая и геометрическая прогрессии (15 ч.)




§9. Арифметическая прогрессия.



58

Анализ контрольной работы.

п.24 Последовательности.

1


59

п.25 Определение арифметической прогрессии.

1


60

Формула n-го члена арифметической прогрессии.

1


61

Решение упражнений на применение формулы n-го члена арифметической прогрессии.

1


62

п.26 Формула суммы n первых членов арифметической прогрессии.

1


63

Решение упражнений по теме: «Арифметическая прогрессия».

1


64

Решение упражнений по теме: «Арифметическая прогрессия».

1


65

Контрольная работа № 5 по теме «Арифметическая прогрессия».

1



§10. Геометрическая прогрессия.



66

Анализ контрольной работы.

п.27 Определение геометрической прогрессии.

1


67

Формула n-го члена геометрической прогрессии.

1


68

Решение упражнений на применение формулы n-го члена геометрической прогрессии.

1


69

п.28 Формула суммы n первых членов геометрической прогрессии.

1


70

Сумма бесконечной геометрической прогрессии при .

1


71

Решение упражнений по теме: «Геометрическая прогрессия».

1


72

Контрольная работа №6 по теме «Геометрическая прогрессия».

1



Глава V. «Элементы комбинаторики и теории вероятностей» (13ч.)




§11. Элементы комбинаторики.



73

Анализ контрольной работы.

п.30 Примеры комбинаторных задач. Комбинаторное правило умножения.

1


74

Решение комбинаторных задач.

1


75

п.31 Перестановки

1


76

Решение упражнений по теме «Перестановки»

1


77

п.32 Размещения

1


78

Решение упражнений по теме «Размещения»

1


79

п.33 Сочетания

1


80

Решение упражнений по теме « Сочетания»

1


81

Решение комбинаторных задач.

1


82

Начальные сведения из теории вероятностей.

1


83

п.34 Относительная частота случайного события.

1


84

п.35 Вероятность равновозможных событий.

1


85

Контрольная работа №7 по теме «Элементы комбинаторики и теории вероятностей»

1



Повторение. Решение задач по курсу алгебры 7 – 9 классов (17 ч.)



86

Анализ контрольной работы.

Повторение по теме «Числовые и буквенные выражения».

1


87

Повторение по теме «Основные действия с многочленами и с алгебраическими дробями».

1


88

Повторение по теме «Разложение многочленов на множители. Тождественные преобразования рациональных выражений».

1


89

Повторение по теме «Степень и ее свойства».

1


90

Повторение по теме «Преобразование выражений со степенью».

1


91

Повторение по теме «Свойства арифметических квадратных корней».

1


92

Повторение по теме «Преобразование выражений, содержащих квадратный корень».

1


93

Повторение по теме «Уравнения. Решение задач на составление уравнений».

1


94

Повторение по теме «Системы уравнений. Решение задач с помощью систем уравнений».

1


95

Решение задач на проценты.

1


96

Повторение по теме «Линейные и квадратные неравенства с одной переменной

1


97

Повторение по теме «Системы неравенств».

1


98

Повторение по теме «Функции».

1


99

Итоговая контрольная работа за курс алгебры 7-9 класса.

1


100

Итоговая контрольная работа за курс алгебры 7-9 класса .

1


101

Анализ контрольной работы.

1


102

Решение задач. Итоговый урок.

1



Итого: 102 ч

102 ч











8