Рабочая программа по математике 2 класс. «Начальная школа 21 века»
Пояснительная записка
Рабочая программа по математике составлена на основе:
Положения о составлении рабочих программ учителями МБОУ СОШ №42 им. Х. Мамсурова города Владикавказа;
Федерального государственного образовательного стандарта начального общего образования» (2009);
«Фундаментального ядра содержания общего образования» (под редакцией В.В.Козлова, А.М.Кондакова);
Базисного учебного плана школы;
«Планируемых результатов начального общего образования» (под редакцией Г.С.Ковалевой, О.Б.Логиновой);
«Примерных программ начального общего образования»;
авторской программы для 2 класса В. Н. Рудницкой – М.: Вентана-Граф, 2014г..
Цели и задачи обучения математике
Обучение математике в начальной школе направлено на достижение следующих целей:
- обеспечение интеллектуального развития младших школьников:
- формирование основ логико-математического мышления, пространственного воображения, овладение учащимися математической речью для описания математических объектов и процессов окружающего мира в количественном и пространственном отношениях, для обоснования получаемых результатов, решения учебных задач;
- предоставление младшим школьникам основ начальных математических знаний и формирование соответствующих умений: решать учебные и практические задачи; вести поиск информации (фактов, сходств, различий, закономерностей, оснований для упорядочивания и классификации математических объектов); измерять наиболее распространенные в практике величины;
- умение применять алгоритмы арифметических действий для вычислений;
- узнавать в окружающих предметах знакомые геометрические фигуры, выполнять несложные геометрические построения;
- реализация воспитательного аспекта обучения: воспитание потребности узнавать новое, расширять свои знания, проявлять интерес к занятиям математикой, стремиться использовать математические знания и умения при изучении других школьных предметов и в повседневной жизни, приобрести привычку доводить начатую работу до конца, получать удовлетворение от правильно и хорошо выполненной работы, уметь обнаруживать и оценивать красоту и изящество математических методов, решений, образов.
Важнейшими задачами обучения являются создание благоприятных условий для полноценного математического развития каждого ученика на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической подготовки для дальнейшего успешного обучения в основной школе.
Математика как учебный предмет вносит заметный вклад в реализацию важнейших целей и задач начального общего образования младших школьников. Овладение учащимися начальных классов основами математического языка для описания разнообразных предметов и явлений окружающего мира, усвоение общего приёма решения задач как универсального действия, умения выстраивать логические цепочки рассуждений, алгоритмы выполняемых действий, использование измерительных и вычислительных умений и навыков создают необходимую базу для успешной организации процесса обучения учащихся в начальной школе.
Общая характеристика курса математики.
Особенность обучения в начальной школе состоит в том, что именно на данной ступени у учащихся начинается формирование элементов учебной деятельности. На основе этой деятельности у ребенка возникают теоретическое сознание и мышление, развиваются соответствующие способности (рефлексия, анализ, мысленное планирование); происходит становление потребности и мотивов учения. С учетом сказанного в данном курсе в основу отбора содержания обучения положены следующие наиболее важные методические принципы: анализ конкретного учебного материала с точки зрения его общеобразовательной ценности и необходимости изучения в начальной школе; возможность широкого применения изучаемого материала на практике; взаимосвязь вводимого материала с ранее изученным; обеспечение преемственности с дошкольной математической подготовкой и содержанием следующей ступени обучения в средней школе; обогащение математического опыта младших школьников за счёт включения в курс дополнительных вопросов, традиционно не изучавшихся в начальной школе.
Основу данного курса составляют пять взаимосвязанных содержательных линий: элементы арифметики; величины и их измерение; логико-математические понятия; алгебраическая пропедевтика; элементы геометрии. Для каждой из этих линий отобраны основные понятия, вокруг которых развертывается все содержание обучения. Понятийный аппарат включает следующие четыре понятия, вводимые без определений: число, отношение, величина, геометрическая фигура. В соответствии с требованиями стандарта начального общего образования в современном учебном процессе предусмотрена работа с информацией (представление, анализ и интерпретация данных, чтение диаграмм и пр.). В данном курсе математики этот материал не выделяется в отдельную содержательную линию, а регулярно присутствует при изучении программных вопросов, образующих каждую из вышеназванных линий содержания обучения. Общее содержание обучения математике представлено в программе следующими разделами: «Число и счет»,«Арифметические действия и их свойства», «Величины»,«Работа с текстовыми задачами»,«Пространственные отношения. Геометрические фигуры», «Логико-математическая подготовка», «Работа с информацией».
Обучение письменным приёмам сложения и вычитания начинается во 2 классе. Овладев этими приемами с двузначными числами, учащиеся легко переносят полученные умения на трехзначные числа (3 класс) и вообще на любые многозначные числа (4 класс). Изучение величин распределено по темам программы таким образом, что формирование соответствующих умений производится в течение продолжительных интервалов времени.
Во втором классе вводится метр и рассматриваются важнейшие соотношения между изученными единицами длины. Понятие площади фигуры — более сложное. Однако его усвоение удается существенно облегчить и при этом добиться прочных знаний и умений благодаря организации большой подготовительной работы. Идея подхода заключается в том, чтобы научить учащихся, используя практические приемы, находить площадь фигуры, пересчитывая клетки, на которые она разбита. Эта работа довольно естественно увязывается с изучением таблицы умножения. Получается двойной выигрыш: дети приобретают необходимый опыт нахождения площади фигуры (в том числе прямоугольника) и в то же время за счет дополнительной тренировки (пересчитывание клеток) быстрее запоминают таблицу умножения.
Этот (первый) этап довольно продолжителен. После того как дети приобретут достаточный практический опыт, начинается второй этап, на котором вводятся единицы площади: квадратный сантиметр, квадратный дециметр и квадратный метр. Теперь площадь фигуры, найденная практическим путем (например, с помощью палетки), выражается в этих единицах. Наконец, на третьем этапе во 2 классе, т. е. раньше, чем это делается традиционно, вводится правило нахождения площади прямоугольника. Такая методика позволяет добиться хороших результатов: с полным пониманием сути вопроса учащиеся осваивают понятие «площадь», не смешивая его с понятием «периметр», введённым ранее.
В курсе созданы условия для организации работы, направленной на подготовку учащихся к освоению в основной школе элементарных алгебраических понятий — переменная, выражение с переменной, уравнение. Эти термины в курсе не вводятся, однако рассматриваются разнообразные выражения, равенства и неравенства, содержащие «окошко», вместо которых подставляются те или иные числа. В соответствии с программой учащиеся овладевают многими важными логико-математическими понятиями.
Важное место в формировании умения работать с информацией принадлежит арифметическим текстовым задачам. Работа над задачами заключается в выработке умения не только их решать, но и преобразовать текст: изменять одно из данных или вопрос, составлять и решать новую задачу с изменёнными данными и пр. Форма предъявления текста задачи может быть разной (текст с пропуском данных, часть данных представлена на рисунке, схеме или в таблице), Нередко перед учащимися ставится задача обнаружения недостаточности информации в тексте и связанной с ней необходимости корректировки этого текста.
Описание места учебного предмета, курса в учебном плане
В соответствии с Базисным учебным планом МБОУ СОШ № 42 им. Х. Мамсурова предмет математики изучается с 1 по 4 класс. . В каждом классе урок математики проводится 4 раза в неделю. При этом в 1 классе курс рассчитан на 132 ч (33 учебных недели), а в каждом из остальных классов — на 136 ч (34 учебных недели).
Программа по математике во 2 классе рассчитана на 136 часов (34 недели 4 ч в неделю)
Описание ценностных ориентиров содержания учебного предмета
Математика является основой общечеловеческой культуры. Об этом свидетельствует её постоянное и обязательное присутствие практически во всех сферах современного мышления, науки и техники. Поэтому приобщение учащихся к математике как к явлению общечеловеческой культуры существенно повышает её роль в развитии личности младшего школьника.
Содержание курса математики направлено, прежде всего, на интеллектуальное развитие младших школьников: овладение логическими действиями (сравнение, анализ, синтез, обобщение, классификация по родовидовым признакам, установление аналогий и причинно-следственных связей, построение рассуждений, отнесение к известным понятиям). Данный курс создаёт благоприятные возможности для того, чтобы сформировать у учащихся значимые с точки зрения общего образования арифметические и геометрические представления о числах и отношениях, алгоритмах выполнения арифметических действий, свойствах этих действий, о величинах и их измерении, о геометрических фигурах; создать условия для овладения учащимися математическим языком, знаково-символическими средствами, умения устанавливать отношения между математическими объектами, служащими средством познания окружающего мира, процессов и явлений, происходящих в повседневной практике.
Овладение важнейшими элементами учебной деятельности в процессе реализации содержания курса на уроках математики обеспечивает формирование у учащихся «умения учиться», что оказывает заметное влияние на развитие их познавательных способностей. Особой ценностью содержания обучения является работа с информацией, представленной в виде таблиц, графиков, диаграмм, схем, баз данных; формирование соответствующих умений на уроках математики оказывает существенную помощь при изучении других школьных предметов.
Планируемые результаты освоения курса математики во2 классе..
Личностными результатами обучения учащихся являются:
- самостоятельность мышления; умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
- готовность и способность к саморазвитию;
- сформированность мотивации к обучению;
- способность характеризовать и оценивать собственные математические знания и умения;
- заинтересованность в расширении и углублении получаемых математических знаний;
- готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;
- способность преодолевать трудности, доводить начатую работу до ее завершения;
- способность к самоорганизованности;
- высказывать собственные суждения и давать им обоснование;
- владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).
Метапредметными результатами обучения являются:
- владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
- понимание и принятие учебной задачи, поиск и нахождение способов ее решения;
- планирование, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;
- выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);
- создание моделей изучаемых объектов с использованием знаково-символических средств;
- понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;
- адекватное оценивание результатов своей деятельности;
- активное использование математической речи для решения разнообразных коммуникативных задач;
- готовность слушать собеседника, вести диалог;
- умение работать в информационной среде.
Предметными результатами учащихся являются:
- овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;
- умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;
- овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;
- умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности); представлять, анализировать и интерпретировать данные.
К концу обучения во втором классе учащиеся должны:
Называть:
компоненты и результаты арифметических действий: слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное;
число, большее (меньшее) данного в несколько раз;
фигуру, изображенную на рисунке (луч, окружность, угол, многоугольник);
Воспроизводить по памяти:
результаты табличного умножения однозначных чисел; результаты табличных случаев деления;
результаты табличных случаев вычитания в пределах 20;
соотношения между единицами длины: 1 м = 100 см, 1 дм = 10 см, 1 м = 10 дм;
определение прямоугольника (квадрата);
Различать :
числовое выражение и выражение с переменной;
прямые и непрямые углы;
периметр и площадь фигуры;
луч и отрезок;
элементы многоугольника: вершина, сторона, угол;
Сравнивать:
Использовать модели (моделировать учебную ситуацию) :
составлять и решать задачу по данной схеме;
читать графы, моделирующие отношения между числами и величинами);
строить графы отношений, выраженные словами «больше», «меньше», «старше», «моложе» и т.д.;
Приводить примеры :
Решать учебные и практические задачи:
читать и записывать цифрами любые двузначные числа;
составлять простейшие выражения (сумму, разность, произведение, частное);
отмечать на числовом луче точку с данными координатами; читать координату точки, лежащей на числовом луче;
выполнять письменно сложение и вычитание чисел, когда результат действия не превышает 100;
применять свойства умножения и деления при выполнении вычислений;
применять правило поразрядного сложения и вычитания чисел при выполнении письменных вычислений;
вычислять значения выражения с одной переменной при заданном наборе числовых значений этой переменной;
решать составные текстовые задачи в два действия (в различных комбинациях), в том числе задачи на увеличение и уменьшение числа в несколько раз;
вычислять периметр многоугольника;
вычислять площадь прямоугольника (квадрата);
изображать луч и отрезок, обозначать их буквами и читать обозначения;
строить окружность с помощью циркуля;
Устанавливать связи и зависимости:
Содержание учебного предмета.
Сложение и вычитание в пределах 100. Чтение и запись двузначных чисел цифрами. Сведения из истории математики. Происхождение римских цифр. Луч, его изображение и обозначение. Принадлежность точки лучу. Взаимное расположение на плоскости лучей и отрезков. Числовой луч. Координата точки. Сравнение чисел с использованием числового луча.
Единица длины «метр» и ее обозначение (м). Соотношения между единицами длины (1 м = 100 см, 1 дм = 10 см, 1 м = 10 дм). Сведения из истории математики. Старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень) и массы (пуд).
Практические способы сложения и вычитания двузначных чисел. Поразрядное сложение и вычитание двузначных чисел, в том числе с использованием микрокалькулятора при вычислениях.
Многоугольник и его элементы: вершины, стороны, углы. Периметр многоугольника и его вычисление. Окружность: радиус и центр окружности. Построение окружности с помощью циркуля. Взаимное расположение фигур на плоскости.
Таблица умножения однозначных чисел. Табличное умножение чисел и соответствующие случаи деления. Практические способы нахождения площадей фигур. Единицы площади: квадратный дециметр, квадратный сантиметр, квадратный метр и их обозначения.
Доля числа. Нахождение одной или нескольких долей данного числа и числа по нескольким его долям.
Умножение и деление с 0 и 1. Свойство умножения: умножать числа можно в любом порядке.
Отношения «меньше в» и «больше в». Решение задач на увеличение и уменьшение числа в несколько раз.
Выражения. Название компонентов действий сложения, вычитания, умножения и деления. Числовое выражение и его значение. Числовые выражения, содержащие скобки. Нахождение значений числовых выражений. Угол. Прямой и непрямой углы. Прямоугольник (квадрат).
Свойства противоположных сторон и диагоналей прямоугольника. Правило вычисления площади прямоугольника (квадрата).
Понятие о переменной. Выражение, содержащее переменную. Нахождение значений выражения с переменной при заданном наборе ее числовых значений. Запись решения задач, содержащих переменную.
Практические работы. Определение вида угла (прямой, непрямой), нахождение прямоугольника среди данных четырехугольников с помощью модели прямого угла.
Описание материально-технического обеспечения образовательного процесса.
Программа – Сборник программ к комплекту учебников «Начальная школа 21 века», М., Вентана-Граф, 2011г.
Учебники – Рудницкая В.Н., Юдачева Т.В., учебник 2 класс в двух частях, М., Вентана-Граф, 2012г.
Учебные пособия – Рудницкая В.Н., Юдачева Т.В., Рабочие тетради «Математика» 2 кл., М., Вентана-Граф, 2012г., Рудницкая В. Н. Дидактические материалы «Математика». 2 кл. – М.: Вентана-Граф, 2012г., Кочурова Е. Э. Рабочие тетради «Дружим с математикой». 2 кл. – М.: Вентана-Граф, 2012г.
Методические пособия для педагогов - Беседы с учителем. Методика обучения: 2 класс / Под ред. Л. Е. Журовой. – М.: Вентана-Граф, 2007г., Математика: 2 класс: методическое пособие / Л. Рудницкая В. Н., Юдачева Т. В. – М.: Вентана-Граф, 2012г., Оценка знаний. Математика. 1 – 4 класс. Автор: Рудницкая В. Н., Юдачева Т. В., – М.: Вентана-Граф, 2008.