Пояснительная записка Школа 2100 математика 4 класс Т.Е.Демидова

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка



Рабочая программа по математике составлена в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования, примерной программы начального общего образования и авторской программы С.А. Козловой, А.Г.Рубина, Т.Е.Демидовой, А.П. Тонких «Математика» (Образовательная система «Школа 2100».Федеральный государственный образовательный стандарт. Примерная основная образовательная программа. В 2-х книгах. Книга 2. Программы отдельных предметов(курсов) для начальной школы / Под науч. ред. Д. И. Фельдштейна. Изд. 2-е, испр. - М.:Баласс, 2011.- 416 с.), а также учебного плана МБОУ СОШ №154 на 2014 - 2015 уч. г. и основной образовательной программы начального общего образования МБОУ СОШ №154 г.о. Самара



Цели обучения в предлагаемом курсе математики в 1–4 классах, сформулированы как линии развития личности ученика средствами предмета:

  • использование математических знаний и умений для решения различных математических задач и оценки полученных результатов;

  • умения использовать математические средства для изучения и описания реальных процессов и явлений;

  • совокупность умений по работе с информацией, в том числе и с различными математическими текстами;

  • совокупность умений по использованию доказательной математической речи;

  • независимость и критичность мышления;

  • воля и настойчивость в достижении цели.


Важнейшие задачи образования в начальной школе (формирование предметных и универсальных способов действий, обеспечивающих возможность продолжения образования в основной школе; воспитание умения учиться – способности к самоорганизации с целью решения учебных задач; индивидуальный прогресс в основных сферах личностного развития – эмоциональной, познавательной, регулятивной) реализуются в процессе обучения всем предметам. Однако каждый из них имеет свою специфику.

Предметные знания и умения, приобретённые при изучении математики в начальной школе, первоначальное овладение математическим языком являются опорой для изучения смежных дисциплин, фундаментом обучения в старших классах общеобразовательных учреждений.

В то же время в начальной школе этот предмет является основой развития у учащихся познавательных действий, в первую очередь логических, включая и знаково-символические, а также таких, как планирование (цепочки действий по задачам), систематизация и структурирование знаний, преобразование информации, моделирование, дифференциация существенных и несущественных условий, аксиоматика, формирование элементов системного мышления, выработка вычислительных навыков. Особое значение имеет математика для формирования общего приема решения задач как универсального учебного действия. Таким образом, математика является эффективным средством развития личности школьника.

Исходя из общих положений концепции математического образования, начальный курс математики призван решать следующие задачи:

  • создать условия для формирования логического и абстрактного мышления у младших школьников на входе в основную школу как основы их дальнейшего эффективного обучения;

  • сформировать набор необходимых для дальнейшего обучения предметных и общеучебных умений на основе решения как предметных, так и интегрированных жизненных задач;

  • обеспечить прочное и сознательное овладение системой математических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования; обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для математической деятельности и необходимые для полноценной жизни в обществе;

  • сформировать представление об идеях и методах математики, о математике как форме описания и методе познания окружающего мира;

  • сформировать представление о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса;

  • сформировать устойчивый интерес к математике на основе дифференцированного подхода к учащимся;

  • выявить и развить математические и творческие способности на основе заданий, носящих нестандартный, занимательный характер.


Общая характеристика учебного предмета.


Данный курс создан на основе личностно ориентированных, деятельностно ориентированных и культурно ориентированных принципов, сформулированных в образовательной программе «Школа 2100», основной целью которой является формирование функционально грамотной личности, готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно-нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно-воспитательного процесса.

Важнейшей отличительной особенностью данного курса с точки зрения содержания является включение наряду с общепринятыми для начальной школы линиями «Числа и действия над ними», «Текстовые задачи», «Величины», «Элементы геометрии», «Элементы алгебры», ещё и таких содержательных линий, как «Стохастика» и «Занимательные и нестандартные задачи». Кроме того, следует отметить, что предлагаемый курс математики содержит материалы для системной проектной деятельности и работы с жизненными (компетентностными) задачами.


Деятельностный подход – основной способ получения знаний

В результате освоения предметного содержания курса математики у учащихся должны сформироваться как предметные, так и общие учебные умения, а также способы познавательной деятельности. Такая работа может эффективно осуществляться только в том случае, если ребёнок будет испытывать мотивацию к деятельности, для него будут не только ясны рассматриваемые знания и алгоритмы действий, но и представлена интересная возможность для их реализации.

Предполагается, что образовательные и воспитательные задачи обучения математике будут решаться комплексно. Учитель имеет право самостоятельного выбора технологий, методик и приёмов педагогической деятельности, однако при этом необходимо понимать, что необходимо эффективное достижение целей, обозначенных федеральным государственным образовательным стандартом начального общего образования.

Рассматриваемый курс математики предлагает решение новых образовательных задач путём использования современных образовательных технологий.

В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности. При этом в первом классе проблемная ситуация естественным образом строится на дидактической игре.

Материалы курса организованы таким образом, чтобы педагог и дети могли осуществлять дифференцированный подход в обучении и обладали правом выбора уровня решаемых математических задач.

В предлагаемом курсе математики представлены задачи разного уровня сложности по изучаемой теме. Это создаёт возможность построения для каждого ученика самостоятельного образовательного маршрута. Важно, чтобы его вместе планировали ученик и учитель. Именно по этой причине авторы не разделили материалы учебника на основной и дополнительный – это делают дети под руководством учителя на уроке. Учитель при этом ориентируется на требования стандартов российского образования как основы изучаемого материала.

Мы пользуемся общим для учебников Образовательной системы «Школа 2100» принципомминимакса. Согласно этому принципу учебники содержат учебные материалы, входящие в минимум содержания (базовый уровень), и задачи повышенного уровня сложности (программный и максимальный уровень), не обязательные для всех. Таким образом, ученик должен освоить минимум, но может освоить максимум.

Важнейшей отличительной особенностью данного курса с точки зрения деятельностного подхода является включение в него специальных заданий на применение существующих знаний «для себя» через дидактическую игру, проектную деятельность и работу с жизненными (компетентностными) задачами.


Личностные, метапредметные и предметные результаты освоения учебного предмета


В результате освоения предметного содержания предлагаемого курса математики у учащихся предполагается формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных) позволяющих достигать предметных, метапредметных и личностных результатов.


4-й класс

Личностными результатами изучения учебно-методического курса «Математика» в 4-м классе является формирование следующих умений:

  • Придерживаться этических норм общения и сотрудничества при совместной работе над учебной задачей.

  • В созданных совместно с педагогом на уроке ситуациях общения и сотрудничества и в самостоятельно созданных ситуациях во внеурочной деятельности (проекты), опираясь на общие для всех простые правила поведения, делать выбор, как себя вести.

  • Самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).

Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять свое отношение к миру.


Метапредметными результатами изучения учебно-методического курса «Математика» в 4-м классе являются формирование следующих универсальных учебных действий

Регулятивные УУД:

  • Самостоятельно формулировать цели урока после предварительного обсуждения.

  • Учиться совместно с учителем обнаруживать и формулировать учебную проблему.

  • Составлять план решения проблемы (задачи) совместно с классом и учителем.

  • Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки с помощью других учащихся и учителя.

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

  • В диалоге с учителем и другими учащимися учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

  • Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения учебной задачи урока.

  • Отбирать необходимые для решения учебной задачи источники информации среди предложенных учителем словарей, энциклопедий, справочников.

  • Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

  • Перерабатывать полученную информацию: анализировать, сравнивать и группировать факты, формировать на основе этих действий умозаключения и выражать их в речи.

  • Перерабатывать полученную информацию: делать выводы на основе анализа и обобщения знаний.

  • Преобразовывать информацию из одной формы в другую: составлять простой план решения учебной задачи.

  • Преобразовывать информацию из одной формы в другую: представлять текстовую информацию в виде таблицы, схемы, краткой записи и наоборот.

  • Переходить от условно-схематических моделей к тексту.

  • Преобразовывать информацию из одной формы в другую: составлять простой план учебно-научного текста.

Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.

Коммуникативные УУД:

  • Доносить свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.

  • Доносить свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.

  • Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

  • Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).


  • Читать тексты учебников и при этом: отделять новое от известного; выделять главное; составлять план.

Средством формирования этих действий служит технология продуктивного чтения.

  • Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).

  • Уважительно относиться к позиции другого, пытаться договариваться.

Средством формирования этих действий служит работа в малых группах.


Предметными результатами изучения курса «Математика» в 4-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

использовать при решении различных задач название и последовательность чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

объяснять, как образуется каждая следующая счётная единица;

использовать при решении различных задач названия и последовательность разрядов в записи числа;

использовать при решении различных задач названия и последовательность первых трёх классов;

рассказывать, сколько разрядов содержится в каждом классе;

объяснять соотношение между разрядами;

использовать при решении различных задач и обосновании своих действий знание о количестве разрядов, содержащихся в каждом классе;

использовать при решении различных задач и обосновании своих действий знание о том, сколько единиц каждого класса содержится в записи числа;

использовать при решении различных задач и обосновании своих действий знание о позиционности десятичной системы счисления;

использовать при решении различных задач знание о единицах измерения величин (длина, масса, время, площадь), соотношении между ними;

использовать при решении различных задач знание о функциональной связи между величинами (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях, выполнять проверку правильности вычислений;

выполнять умножение и деление с 1 000;

решать простые и составные задачи, раскрывающие смысл арифметических действий, отношения между числами и зависимость между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

решать задачи, связанные с движением двух объектов: навстречу и в противоположных направлениях;

решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 3−4 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

прочитать записанное с помощью букв простейшее выражение (сумму, разность, произведение, частное), когда один из компонентов действия остаётся постоянным и когда оба компонента являются переменными;

осознанно пользоваться алгоритмом нахождения значения выражений с одной переменной при заданном значении переменных;

использовать знание зависимости между компонентами и результатами действий сложения, вычитания, умножения, деления при решении уравнений вида: a ± x = b; x – a = b ; a ∙ x = b; a : x = b; x : a = b;

уметь сравнивать значения выражений, содержащих одно действие; понимать и объяснять, как изменяется результат сложения, вычитания, умножения и деления в зависимости от изменения одной из компонент.

вычислять объём параллелепипеда (куба);

вычислять площадь и периметр фигур, составленных из прямоугольников;

выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;

строить окружность по заданному радиусу;

выделять из множества геометрических фигур плоские и объёмные фигуры;

распознавать геометрические фигуры: точка, линия (прямая, кривая), отрезок, луч, ломаная, многоугольник и его элементы (вершины, стороны, углы), в том числе треугольник, прямоугольник (квадрат), угол, круг, окружность (центр, радиус), параллелепипед (куб) и его элементы (вершины, ребра, грани), пирамиду, шар, конус, цилиндр;

находить среднее арифметическое двух чисел.

2-й уровень (программный)

Учащиеся должны уметь:

использовать при решении различных задач и обосновании своих действий знание о названии и последовательности чисел в пределах 1 000 000 000.

Учащиеся должны иметь представление о том, как читать, записывать и сравнивать числа в пределах 1 000 000 000;

Учащиеся должны уметь:

выполнять прикидку результатов арифметических действий при решении практических и предметных задач;

осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 6 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

находить часть от числа, число по его части, узнавать, какую часть одно число составляет от другого;

иметь представление о решении задач на части;

понимать и объяснять решение задач, связанных с движением двух объектов: вдогонку и с отставанием;

читать и строить вспомогательные модели к составным задачам;

распознавать плоские геометрические фигуры при изменении их положения на плоскости;

распознавать объёмные тела – параллелепипед (куб), пирамида, конус, цилиндр – при изменении их положения в пространстве;

находить объём фигур, составленных из кубов и параллелепипедов;

использовать заданные уравнения при решении текстовых задач;

решать уравнения, в которых зависимость между компонентами и результатом действия необходимо применить несколько раз: а ∙ х ± b = с; (х ± b) : с = d; a ± x ± b = с и др.;

читать информацию, записанную с помощью круговых диаграмм;

решать простейшие задачи на принцип Дирихле;

находить вероятности простейших случайных событий;

находить среднее арифметическое нескольких чисел.


Рабочая программа рассчитана на 136 часов в год (4 часа в неделю).

В том числе:

- плановых контрольных работ- 6

Количество часов в 1 четверти 36

Количество часов во 2 четверти 28

Количество часов в 3 четверти 40

Количество часов в 4 четверти 32

Содержание учебного предмета


В предлагаемом курсе математики выделяются несколько содержательных линий.

1. Числа и операции над ними. Понятие натурального числа является одним из ценцентральных понятий начального курса математики. Формирование этого понятия осуществляется практически в течение всех лет обучения. Раскрывается это понятие на конкретной основе в результате практического оперирования конечными предметными множествами; в процессе счёта предметов, в процессе измерения величин. В результате раскрываются три подхода к построению математической модели понятия «число»: количественное число, порядковое число, число как мера величины.

В тесной связи с понятием числа формируется понятие о десятичной системе счисления. Раскрывается оно постепенно, в ходе изучения нумерации и арифметических операций над натуральными числами. При изучении нумерации деятельность учащихся направляется на осознание позиционного принципа десятичной системы счисления и на соотношение разрядных единиц.

Важное место в начальном курсе математики занимает понятие арифметической операции. Смысл каждой арифметической операции раскрывается на конкретной основе в процессе выполнения операций над группами предметов, вводится соответствующая символика и терминология. При изучении каждой операции рассматривается возможность её обращения.

Важное значение при изучении операций над числами имеет усвоение табличных случаев сложения и умножения. Чтобы обеспечить прочное овладение ими, необходимо, во-первых, своевременно создать у детей установку на запоминание, во-вторых, практически на каждом уроке организовать работу тренировочного характера. Задания, предлагаемые детям, должны отличаться разнообразием и способствовать включению в работу всех детей класса. Необходимо использовать приёмы, формы работы, способствующие поддержанию интереса детей, а также различные средства обратной связи.

В предлагаемом курсе изучаются некоторые основные законы математики и их практические приложения:

  • коммутативный закон сложения и умножения;

  • ассоциативный закон сложения и умножения;

  • дистрибутивный закон умножения относительно сложения.

2. Величины и их измерение. Величина также является одним из основных понятий начального курса математики. В процессе изучения математики у детей необходимо сформировать представление о каждой из изучаемых величин (длина, масса, время, площадь, объем и др.) как о некотором свойстве предметов и явлений окружающей нас жизни, а также умение выполнять измерение величин.

Формирование представления о каждых из включённых в программу величин и способах её измерения имеет свои особенности. Однако можно выделить общие положения, общие этапы, которые имеют место при изучении каждой из величин в начальных классах:

  1. выясняются и уточняются представления детей о данной величине (жизненный опыт ребёнка);

  2. проводится сравнение однородных величин (визуально, с помощью ощущений, непосредственным сравнением с использованием различных условных мерок и без них);

  3. проводится знакомство с единицей измерения данной величины и с измерительным прибором;

  1. формируются измерительные умения и навыки;

  2. выполняется сложение и вычитание значений однородных величин, выраженных в единицах одного наименования (в ходе решения задач);

  3. проводится знакомство с новыми единицами измерения величины;

  4. выполняется сложение и вычитание значений величины, выраженных в единицах двух наименований;

  5. выполняется умножение и деление величины на отвлечённое число. При изучении величин имеются особенности и в организации деятельности учащихся.

3. Текстовые задачи. В начальном курсе математики особое место отводится простым (опорным) задачам. Умение решать такие задачи − фундамент, на котором строится работа с более сложными задачами.

В ходе решения опорных задач учащиеся усваивают смысл арифметических действий, связь между компонентами и результатами действий, зависимость между величинами и другие вопросы.

4. Элементы геометрии. Изучение геометрического материала служит двум основным целям: формированию у учащихся пространственных представлений и ознакомлению с геометрическими величинами (длиной, площадью, объёмом).

Наряду с этим одной из важных целей работы с геометрическим материалом является использование его в качестве одного из средств наглядности при рассмотрении некоторых арифметических фактов. Кроме этого, предполагается установление связи между арифметикой и геометрией на начальном этапе обучения математике для расширения сферы применения приобретённых детьми арифметических знаний, умений и навыков.

Геометрический материал изучается в течение всех лет обучения в начальных классах, начиная с первых уроков.

В изучении геометрического материала просматриваются два направления:

  1. формирование представлений о геометрических фигурах;

  2. формирование некоторых практических умений, связанных с построением геометрических фигур и измерениями.

Геометрический материал распределён по годам обучения и по урокам так, что при изучении он включается отдельными частями, которые определены программой и соответствующим учебником.

Преимущественно уроки математики следует строить так, чтобы главную часть их составлял арифметический материал, а геометрический материал входил бы составной частью.

Предложенные в учебнике упражнения, в ходе выполнения которых происходит формирование представлений о геометрических фигурах, можно охарактеризовать как задания:

  • в которых геометрические фигуры используются как объекты для пересчитывания;

  • на классификацию фигур;

  • на выявление геометрической формы реальных объектов или их частей;

  • на построение геометрических фигур;

  • на разбиение фигуры на части и составление её из других фигур;

  • на формирование умения читать геометрические чертежи;

  • вычислительного характера (сумма длин сторон многоугольника и др.).

Знакомству с геометрическими фигурами и их свойствами способствуют и простейшие задачи на построение. В ходе их выполнения необходимо учить детей пользоваться чертёжными инструментами, формировать у них чертёжные навыки. Здесь надо предъявлять к учащимся требования не меньшие, чем при формировании навыков письма и счёта.

  1. Элементы алгебры. В курсе математики для начальных классов формируются некоторые понятия, связанные с алгеброй. Это понятия выражения, равенства, неравенства (числового и буквенного), уравнения и формулы. Суть этих понятий раскрывается на конкретной основе, изучение их увязывается с изучением арифметического материала. У учащихся формируются умения правильно пользоваться математической терминологией и символикой.

  2. Элементы стохастики. Наша жизнь состоит из явлений стохастического характера. Поэтому современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике. В этой связи элементы комбинаторики, теории вероятностей и математической статистики входят в школьный курс математики в виде одной из сквозных содержательно-методических линий, которая даёт возможность накопить определённый запас представлений о статистическом характере окружающих явлений и об их свойствах.

В начальной школе стохастика представлена в виде элементов комбинаторики, теории графов, наглядной и описательной статистики, начальных понятий теории вероятностей. С их изучением тесно связано формирование у младших школьников отдельных комбинаторных способностей, вероятностных понятий («чаще», «реже», «невозможно», «возможно» и др.), начал статистической культуры.

7. Нестандартные и занимательные задачи. В настоящее время одной из тенденций улучшения качества образования становится ориентация на развитие творческого потенциала личности ученика на всех этапах обучения в школе, на развитие его творческого мышления, на умение использовать эвристические методы в процессе открытия нового и поиска выхода из различных нестандартных ситуаций и положений.

4-й класс

(4 часа в неделю, всего – 136 часов)

Числа и операции над ними.

Дробные числа.

Дроби. Сравнение дробей. Нахождение части числа. Нахождение числа по его части.

Какую часть одно число составляет от другого.

Сложение дробей с одинаковыми знаменателями. Вычитание дробей с одинаковыми знаменателями.

Числа от 1 до 1 000 000.

Числа от 1 до 1 000 000. Чтение и запись чисел. Класс единиц и класс тысяч. I, II, III разряды в классе единиц и в классе тысяч. Представление числа в виде суммы его разрядных слагаемых. Сравнение чисел.

Числа от 1 до 1 000 000 000.

Устная и письменная нумерация многозначных чисел.

Числовой луч. Движение по числовому лучу. Расположение на числовом луче точек с заданными координатами, определение координат заданных точек.

Точные и приближенные значения величин. Округление чисел, использование округления в практической деятельности.

Сложение и вычитание чисел.

Операции сложения и вычитания над числами в пределах от 1 до 1 000 000. Приёмы рациональных вычислений.

Умножение и деление чисел.

Умножение и деление чисел на 10, 100, 1 000.

Умножение и деление чисел, оканчивающихся нулями. Устное умножение и деление чисел на однозначное число в случаях, сводимых к действиям в пределах 100.

Письменное умножение и деление на однозначное число.

Умножение и деление на двузначное и трёхзначное число.

Величины и их измерение.

Оценка площади. Приближённое вычисление площадей. Площади составных фигур. Новые единицы площади: мм2, км2, гектар, ар (сотка). Площадь прямоугольного треугольника.

Работа, производительность труда, время работы.

Функциональные зависимости между группами величин: скорость, время, расстояние; цена, количество, стоимость; производительность труда, время работы, работа. Формулы, выражающие эти зависимости.

Текстовые задачи.

Одновременное движение по числовому лучу. Встречное движение и движение в противоположном направлении. Движение вдогонку. Движение с отставанием. Задачи с альтернативным условием.

Элементы геометрии.

Изменение положения объемных фигур в пространстве.

Объёмные фигуры, составленные из кубов и параллелепипедов.

Прямоугольная система координат на плоскости. Соответствие между точками на плоскости и упорядоченными парами чисел.

Элементы алгебры.

Вычисление значений числовых выражений, содержащих до шести действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий. Использование уравнений при решении текстовых задач.

Элементы стохастики.

Сбор и обработка статистической информации о явлениях окружающей действительности. Опросы общественного мнения как сбор и обработка статистической информации.

Понятие о вероятности случайного события.

Стохастические игры. Справедливые и несправедливые игры.

Понятие среднего арифметического нескольких чисел. Задачи на нахождение среднего арифметического.

Круговые диаграммы. Чтение информации, содержащейся в круговой диаграмме.

Занимательные и нестандартные задачи.

Принцип Дирихле.

Математические игры.

Итоговое повторение.


Учебно-методическое обеспечение образовательного процесса

  • Козлова С.А., Рубин А.Г., Горячев А.В. Математика. 4класс. Методические рекомендации для учителя по курсу «Математика» и по курсу «Математика и информатика» – М.: Баласс, 2014.- 416 с. (Образовательная система «Школа 2100»).

  • Т.Е.Демидова,С.А. Козлова, А.П.Тонких . Математика. 4 кл.:учеб. для общеобразоват.организаций. В 3 ч. Изд. 2-е, испр. - М.: Баласс, 2014.- ил. (Образовательная система «Школа 2100»)

  • Козлова С.А., Рубин А.Г. Тесты и контрольные работы по курсу «Математика» и по курсу «Математика и информатика», 4 класс. Изд. 3-е, испр. – М.: Баласс, 2014.-64с.: ил. (Образовательная система «Школа 2100»)

К техническим средствам обучения, которые могут эффективно использоваться на уроках математики, относятся:

  • проектор;

  • компьютер.