[pic]
МАТЕМАТИКА
Пояснительная записка
Программа разработана на основе федерального государственного образовательного стандарта начального общего образования, Концепции духовно-нравственного развития и воспитания личности гражданина России, планируемых результатов начального общего образования и ориентирована на работу по УМК «Школа России».
Цели и задачи курса
Обучение математике является важнейшей составляющей начального общего образования. Этот предмет играет важную роль в формировании у младших школьников умения учиться.
Начальное обучение математике закладывает основы для формирования приемов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определенные обобщенные знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.
Усвоенные в начальном курсе математики знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.
Основными целями начального обучения математике являются:
• Математическое развитие младших школьников.
• Формирование системы начальных математических знаний.
• Воспитание интереса к математике, к умственной деятельности.
Общая характеристика курса
Программа определяет ряд задач, решение которых направлено на достижение основных целей начального математического образования:
– формирование элементов самостоятельной интеллектуальной деятельности на основе овладения несложными математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);
– развитие основ логического, знаково-символического и алгоритмического мышления;
– развитие пространственного воображения;
– развитие математической речи;
– формирование системы начальных математических знаний и умений их применять для решения учебно-познавательных и практических задач;
– формирование умения вести поиск информации и работать с ней;
– формирование первоначальных представлений о компьютерной грамотности;
– развитие познавательных способностей;
– воспитание стремления к расширению математических знаний;
– формирование критичности мышления;
– развитие умений аргументировано обосновывать и отстаивать высказанное суждение, оценивать и принимать суждения других.
Решение названных задач обеспечит осознание младшими школьниками универсальности математических способов познания мира, усвоение начальных математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.
Структура курса
Начальный курс математики является курсом интегрированным: в нем объединен арифметический, геометрический и алгебраический материал.
Основное содержание обучения в программе представлено крупными разделами: «Числа и величины», «Арифметические действия», «Текстовые задачи», «Пространственные отношения. Геометрические фигуры», «Геометрические величины», «Работа с информацией». Такое построение программы позволяет создавать различные модели курса математики, по-разному структурировать содержание учебников, распределять разными способами учебный материал и время его изучения.
Арифметическим ядром программы является учебный материал, который, с одной стороны, представляет основы математической науки, а с другой – содержание, отобранное и проверенное многолетней педагогической практикой, подтвердившей необходимость его изучения в начальной школе для успешного продолжения образования.
Основа арифметического содержания – представления о натуральном числе и нуле, арифметических действиях (сложение, вычитание, умножение и деление). На уроках математики у младших школьников будут сформированы представления о числе как результате счета, о принципах образования, записи и сравнения целых неотрицательных чисел. Учащиеся научатся выполнять устно и письменно арифметические действия с целыми неотрицательными числами в пределах миллиона; узнают, как связаны между собой компоненты и результаты арифметических действий; научатся находить неизвестный компонент арифметического действия по известному компоненту и результату действия; усвоят связи между сложением и вычитанием, умножением и делением; освоят различные приемы проверки выполненных вычислений. Младшие школьники познакомятся с калькулятором и научатся пользоваться им при выполнении некоторых вычислений, в частности при проверке результатов арифметических действий с многозначными числами.
Программа предусматривает ознакомление с величинами (длина, площадь, масса, вместимость, время) и их измерением, с единицами измерения однородных величин и соотношениями между ними.
Важной особенностью программы является включение в нее элементов алгебраической пропедевтики (выражения с буквой, уравнения и их решение). Как показывает многолетняя школьная практика, такой материал в начальном курсе математики позволяет повысить уровень формируемых обобщений, способствует более глубокому осознанию взаимосвязей между компонентами и результатом арифметических действий, расширяет основу для восприятия функциональной зависимости между величинами, обеспечивает готовность выпускников начальных классов к дальнейшему освоению алгебраического содержания школьного курса математики.
Особое место в содержании начального математического образования занимают текстовые задачи. Работа с ними в данном курсе имеет свою специфику и требует более детального рассмотрения.
Система подбора задач, определение времени и последовательности введения задач того или иного вида обеспечивают благоприятные условия для сопоставления, сравнения, противопоставления задач, сходных в том или ином отношении, а также для рассмотрения взаимообратных задач. При таком подходе дети с самого начала приучаются проводить анализ задачи, устанавливая связь между данными и искомым, и осознанно выбирать правильное действие для ее решения. Решение некоторых задач основано на моделировании описанных в них взаимосвязей между данными и искомым.
Решение текстовых задач связано с формированием целого ряда умений: осознанно читать и анализировать содержание задачи (что известно и что неизвестно, что можно узнать по данному условию и что нужно знать для ответа на вопрос задачи); моделировать представленную в тексте ситуацию; видеть различные способы решения задачи и сознательно выбирать наиболее рациональные; составлять план решения, обосновывая выбор каждого арифметического действия; записывать решение (сначала по действиям, а в дальнейшем составляя выражение); производить необходимые вычисления; устно давать полный ответ на вопрос задачи и проверять правильность ее решения; самостоятельно составлять задачи.
Работа с текстовыми задачами оказывает большое влияние на развитие у детей воображения, логического мышления, речи. Решение задач укрепляет связь обучения с жизнью, углубляет понимание практического значения математических знаний, пробуждает у учащихся интерес к математике и усиливает мотивацию к ее изучению. Сюжетное содержание текстовых задач, связанное, как правило, с жизнью семьи, класса, школы, событиями в стране, городе или селе, знакомит детей с разными сторонами окружающей действительности; способствует их духовно-нравственному развитию и воспитанию: формирует чувство гордости за свою Родину, уважительное отношение к семейным ценностям, бережное отношение к окружающему миру, природе, духовным ценностям; развивает интерес к занятиям в различных кружках и спортивных секциях; формирует установку на здоровый образ жизни.
При решении текстовых задач используется и совершенствуется знание основных математических понятий, отношений, взаимосвязей и закономерностей. Работа с текстовыми задачами способствует осознанию смысла арифметических действий и математических отношений, пониманию взаимосвязи между компонентами и результатами действий, осознанному использованию действий.
Программа включает рассмотрение пространственных отношений между объектами, ознакомление с различными геометрическими фигурами и геометрическими величинами. Учащиеся научатся распознавать и изображать точку, прямую и кривую линии, отрезок, луч, угол, ломаную, многоугольник, различать окружность и круг. Они овладеют навыками работы с измерительными и чертежными инструментами (линейка, чертежный угольник, циркуль). В содержание включено знакомство с простейшими геометрическими телами: шаром, кубом, пирамидой. Изучение геометрического содержания создает условия для развития пространственного воображения детей и закладывает фундамент успешного изучения систематического курса геометрии в основной школе.
Программой предусмотрено целенаправленное формирование совокупности умений работать с информацией. Эти умения формируются как на уроках, так и во внеурочной деятельности – на факультативных и кружковых занятиях. Освоение содержания курса связано не только с поиском, обработкой, представлением новой информации, но и с созданием информационных объектов: стенгазет, книг, справочников. Новые информационные объекты создаются в основном в рамках проектной деятельности. Проектная деятельность позволяет закрепить, расширить и углубить полученные на уроках знания, создает условия для творческого развития детей, формирования позитивной самооценки, навыков совместной деятельности со взрослыми и сверстниками, умений сотрудничать друг с другом, совместно планировать свои действия и реализовывать планы, вести поиск и систематизировать нужную информацию.
Описание места учебного предмета в учебном плане
На изучение математики в 4 классе начальной школы отводится 4 ч в неделю. Курс рассчитан на 136 ч (34 учебные недели).
На основании Примерных программ Минобрнауки РФ, содержащих требования к минимальному объему содержания образования по предметному курсу, и с учетом стандарта конкретного образовательного учреждения реализуется программа базового уровня.
В рабочей программе выстроена система учебных занятий (уроков) и педагогических средств, с помощью которых формируются универсальные учебные действия, дано учебно-методическое обеспечение, что представлено в табличной форме далее.
Описание ценностных ориентиров содержания учебного предмета
В основе учебно-воспитательного процесса лежат следующие ценности математики:
• понимание математических отношений является средством познания закономерностей существования окружающего мира, фактов, процессов и явлений, происходящих в природе и обществе (хронология событий, протяженность во времени, образование целого из частей, изменение формы, размера и т. д.);
• математические представления о числах, величинах, геометрических фигурах являются условием целостного восприятия творений природы и человека (памятники архитектуры, сокровища искусства и культуры, объекты природы);
• владение математическим языком, алгоритмами, элементами математической логики позволяет ученику совершенствовать коммуникативную деятельность (аргументировать свою точку зрения, строить логические цепочки рассуждения, опровергать или подтверждать истинность предположения).
Содержание учебного предмета
Числа от 1 до 1 000. Повторение (12 ч)
Четыре арифметических действия. Порядок их выполнения в выражениях, содержащих 2–4 действия. Письменные приемы вычислений.
Числа, которые больше 1 000. Нумерация (11 ч)
Новая счетная единица – тысяча. Разряды и классы: класс единиц, класс тысяч, класс миллионов и т. д. Чтение, запись и сравнение многозначных чисел. Представление многозначного числа в виде суммы разрядных слагаемых. Увеличение (уменьшение) числа в 10, 100, 1 000 раз.
Числа, которые больше 1 000. Величины (13 ч)
Единицы длины: миллиметр, сантиметр, дециметр, метр, километр. Соотношения между ними. Единицы площади: квадратный миллиметр, квадратный сантиметр, квадратный дециметр, квадратный метр, квадратный километр. Соотношения между ними. Единицы массы: грамм, килограмм, центнер, тонна. Соотношения между ними. Единицы времени: секунда, минута, час, сутки, месяц, год, век. Соотношения между ними. Задачи на определение начала, конца события, его продолжительности.
Числа, которые больше 1 000. Сложение и вычитание (10 ч)
Сложение и вычитание (обобщение и систематизация знаний): задачи, решаемые сложением и вычитанием; сложение и вычитание с числом 0; переместительное и сочетательное свойства сложения и их использование для рационализации вычислений; взаимосвязь между компонентами и результатами сложения и вычитания; способы проверки сложения и вычитания. Решение уравнений вида х + 312 = 654 + 79, 729 – х = 217 + 163, х – 137 = 500 – 140. Устное сложение и вычитание чисел в случаях, сводимых к действиям в пределах 100, и письменное – в остальных случаях. Сложение и вычитание значений величин.
Числа, которые больше 1 000. Умножение и деление (77 ч)
Умножение и деление (обобщение и систематизация знаний). Задачи, решаемые умножением и делением; случаи умножения с числами 1 и 0; деление числа 0 и невозможность деления на 0; переместительное и сочетательное свойства умножения, распределительное свойство умножения относительно сложения; рационализация вычислений на основе перестановки множителей, умножения суммы на число и числа на сумму, деления суммы на число, умножения и деления числа на произведение; взаимосвязь между компонентами и результатами умножения и деления; способы проверки умножения и деления. Решение уравнений вида 6 х =
= 429 + 120, х – 18 = 270 – 50, 360 : х – 630 : 7 на основе взаимосвязей между компонентами и результатами действий. Устное умножение и деление на однозначное число в случаях, сводимых к действиям в пределах 100; умножение и деление на 10, 100, 1 000. Письменное умножение и деление на однозначное и двузначное числа в пределах миллиона. Письменное умножение и деление на трехзначное число (в порядке ознакомления). Умножение и деление значений величин на однозначное число. Связь между величинами (скорость, время, расстояние; масса одного предмета, количество предметов, масса всех предметов и др.).
Итоговое повторение (12 ч)
Повторение изученных тем за год.
Результаты изучения учебного предмета
Программа обеспечивает достижение выпускниками начальной школы следующих личностных, метапредметных и предметных результатов:
Личностные результаты
– Чувство гордости за свою Родину, российский народ и историю России.
– Осознание роли своей страны в мировом развитии, уважительное отношение к семейным ценностям, бережное отношение к окружающему миру.
– Целостное восприятие окружающего мира.
– Развитую мотивацию учебной деятельности и личностного смысла учения, заинтересованность в приобретении и расширении знаний и способов действий, творческий подход к выполнению заданий.
– Рефлексивную самооценку, умение анализировать свои действия и управлять ими.
– Навыки сотрудничества со взрослыми и сверстниками.
– Установку на здоровый образ жизни, наличие мотивации к творческому труду, к работе на результат.
Метапредметные результаты
– Способность принимать и сохранять цели и задачи учебной деятельности, находить средства и способы ее осуществления.
– Овладение способами выполнения заданий творческого и поискового характера.
– Умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее выполнения, определять наиболее эффективные способы достижения результата.
– Способность использовать знаково-символические средства представления информации для создания моделей изучаемых объектов и процессов, схем решения учебно-познавательных и практических задач.
– Использование речевых средств и средств информационных и коммуникационных технологий для решения коммуникативных и познавательных задач.
– Использование различных способов поиска (в справочных источниках и открытом учебном информационном пространстве Интернета), сбора, обработки, анализа, организации и передачи информации в соответствии с коммуникативными и познавательными задачами и технологиями учебного предмета, в том числе умение вводить текст с помощью клавиатуры компьютера, фиксировать (записывать) результаты измерения величин и анализировать изображения, звуки, готовить свое выступление и выступать с аудио-, видео- и графическим сопровождением.
– Овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям.
– Готовность слушать собеседника и вести диалог; готовность признать возможность существования различных точек зрения и права каждого иметь свою; излагать свое мнение и аргументировать свою точку зрения.
– Определение общей цели и путей ее достижения: умение договариваться о распределении функций и ролей в совместной деятельности, осуществлять взаимный контроль в совместной деятельности, адекватно оценивать собственное поведение и поведение окружающих.
– Овладение начальными сведениями о сущности и особенностях объектов и процессов в соответствии с содержанием учебного предмета «Математика».
– Овладение базовыми предметными и межпредметными понятиями, отражающими существенные связи и отношения между объектами и процессами.
– Умение работать в материальной и информационной среде начального общего образования (в том числе с учебными моделями) в соответствии с содержанием учебного предмета «Математика».
Предметные результаты
– Использование приобретенных математических знаний для описания и объяснения окружающих предметов, процессов, явлений, а также для оценки их количественных и пространственных отношений.
– Овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи, основами счета, измерения, прикидки результата и его оценки, наглядного представления данных в разной форме (таблицы, схемы, диаграммы), записи и выполнения алгоритмов.
– Приобретение начального опыта применения математических знаний для решения учебно-познавательных и учебно-практических задач.
– Умения выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, выполнять и строить алгоритмы и стратегии в игре, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, представлять, анализировать и интерпретировать данные.
– Приобретение первоначальных навыков работы на компьютере (набирать текст на клавиатуре, работать с меню, находить информацию по заданной теме, распечатывать ее на принтере).
Целевая ориентация настоящей рабочей программы
в практике конкретного образовательного учреждения
Настоящая рабочая программа учитывает особенности класса. В классе учащиеся в процессе изучения математики анализируют и сравнивают предметы, классифицируют их; распознают в предметах окружающей обстановки изучаемые геометрические фигуры, описывают их свойства, изображают; моделируют операции сложения, вычитания, умножения и деления чисел с помощью предметных моделей, схематических рисунков, буквенной символики; используют числовой отрезок для сравнения, сложения и вычитания чисел; образовывают, называют и записывают числа в пределах 1 000; составляют таблицу умножения; задачи по рисункам, схемам, выражениям; решают уравнения, простые и сложные задачи изученных видов; осуществляют ритмический счет до 1 000; применяют знания и способы действий в поисковых ситуациях, находят способ решения нестандартной задачи; выполняют задания творческого характера; собирают информацию в справочной литературе, интернет-ресурсах; готовят проектные работы. Кроме того, в классе ученики продвинутого уровня будут вовлекаться в дополнительную подготовку к урокам, конкурсам и олимпиадам. Учащиеся будут осваивать материал каждый на своем уровне и в своем темпе. На уроках математики ученики могут сотрудничать в парах, группах, умеют контролировать и оценивать друг друга.
В результате изучения курса математики обучающиеся на ступени начального общего образования по темам:
Числа и величины
Выпускник научится:
• читать, записывать, сравнивать, упорядочивать числа от нуля до миллиона;
• устанавливать закономерность — правило, по которому составлена числовая последовательность, и составлять последовательность по заданному или самостоятельно выбранному правилу (увеличение/уменьшение числа на несколько единиц, увеличение/уменьшение числа в несколько раз);
• группировать числа по заданному или самостоятельно установленному признаку;
• читать, записывать и сравнивать величины (массу, время, длину, площадь, скорость), используя основные единицы измерения величин и соотношения между ними (килограмм — грамм; час — минута, минута — секунда; километр — метр, метр — дециметр, дециметр — сантиметр, метр — сантиметр, сантиметр — миллиметр).
Выпускник получит возможность научиться:
• классифицировать числа по одному или нескольким основаниям, объяснять свои действия;
• выбирать единицу для измерения данной величины (длины, массы, площади, времени), объяснять свои действия.
Арифметические действия
Выпускник научится:
• выполнять письменно действия с многозначными числами (сложение, вычитание, умножение и деление на однозначное, двузначное числа в пределах 10•000) с использованием таблиц сложения и умножения чисел, алгоритмов письменных арифметических действий (в том числе деления с остатком);
• выполнять устно сложение, вычитание, умножение и деление однозначных, двузначных и трёхзначных чисел в случаях, сводимых к действиям в пределах 100 (в том числе с нулём и числом 1);
• выделять неизвестный компонент арифметического действия и находить его значение;
• вычислять значение числового выражения (содержащего 2—3 арифметических действия, со скобками и без скобок).
Выпускник получит возможность научиться:
• выполнять действия с величинами;
• использовать свойства арифметических действий для удобства вычислений;
• проводить проверку правильности вычислений (с помощью обратного действия, прикидки и оценки результата действия и др.).
Работа с текстовыми задачами
Выпускник научится:
• анализировать задачу, устанавливать зависимость между величинами, взаимосвязь между условием и вопросом задачи, определять количество и порядок действий для решения задачи, выбирать и объяснять выбор действий;
• решать учебные задачи и задачи, связанные с повседневной жизнью, арифметическим способом (в 1—2 действия);
• оценивать правильность хода решения и реальность ответа на вопрос задачи.
Выпускник получит возможность научиться:
• решать задачи на нахождение доли величины и величины по значению её доли (половина, треть, четверть, пятая, десятая часть);
• решать задачи в 3—4 действия;
• находить разные способы решения задачи.
Пространственные отношения. Геометрические фигуры
Выпускник научится:
• описывать взаимное расположение предметов в пространстве и на плоскости;
• распознавать, называть, изображать геометрические фигуры (точка, отрезок, ломаная, прямой угол, многоугольник, треугольник, прямоугольник, квадрат, окружность, круг);
• выполнять построение геометрических фигур с заданными измерениями (отрезок, квадрат, прямоугольник) с помощью линейки, угольника;
• использовать свойства прямоугольника и квадрата для решения задач;
• распознавать и называть геометрические тела (куб, шар);
• соотносить реальные объекты с моделями геометрических фигур.
Выпускник получит возможность научиться распознавать, различать и называть геометрические тела: параллелепипед, пирамиду, цилиндр, конус.
Геометрические величины
Выпускник научится:
• измерять длину отрезка;
• вычислять периметр треугольника, прямоугольника и квадрата, площадь прямоугольника и квадрата;
• оценивать размеры геометрических объектов, расстояния приближённо (на глаз).
Выпускник получит возможность научиться вычислять периметр многоугольника, площадь фигуры, составленной из прямоугольников.
Работа с информацией
Выпускник научится:
• устанавливать истинность (верно, неверно) утверждений о числах, величинах, геометрических фигурах;
• читать несложные готовые таблицы;
• заполнять несложные готовые таблицы;
• читать несложные готовые столбчатые диаграммы.
Выпускник получит возможность научиться:
• читать несложные готовые круговые диаграммы;
• достраивать несложную готовую столбчатую диаграмму;
• сравнивать и обобщать информацию, представленную в строках и столбцах несложных таблиц и диаграмм;
• понимать простейшие выражения, содержащие логические связки и слова («и», «если то», «верно/неверно, что», «каждый», «все», «некоторые», «не»);
• составлять, записывать и выполнять инструкцию (простой алгоритм), план поиска информации;
• распознавать одну и ту же информацию, представленную в разной форме (таблицы и диаграммы);
• планировать несложные исследования, собирать и представлять полученную информацию с помощью таблиц и диаграмм;
• интерпретировать информацию, полученную при проведении несложных исследований (объяснять, сравнивать и обобщать данные, делать выводы и прогнозы).
Критерии и нормы оценки знаний обучающихся
Знания, умения и навыки учащихся по математике оцениваются по результатам устного опроса, текущих и итоговых письменных работ, тестов.
Письменная проверка знаний, умений и навыков.
В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполненного задания.
Классификация ошибок и недочетов, влияющих на снижение оценки.
Ошибки :
- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;
- неправильный выбор действий, операций;
- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;
- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;
- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;
- несоответствие выполненных измерений и геометрических построений заданным параметрам.
Недочеты:
- неправильное списывание данных (чисел, знаков, обозначений, величин);
- ошибки в записях математических терминов, символов при оформлении математических выкладок;
- отсутствие ответа к заданию или ошибки в записи ответа.
Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.
При оценке работ, включающих в себя проверку вычислительных навыков, ставятся следующие оценки:
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка и 1-2 недочета;
Оценка "3" ставится, если в работе допущены 3-4 ошибки и 1-2 недочета;
Оценка "2" ставится, если в работе допущено 5 и более ошибок;
При оценке работ, состоящих только из задач:
Оценка "5" ставится, если задачи решены без ошибок;
Оценка "4" ставится, если допущены 1-2 ошибки;
Оценка "3" ставится, если допущены 1-2 ошибки и 3-4 недочета;
Оценка "2" ставится, если допущены 3 и более ошибок;
При оценке комбинированных работ:
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибки и 1-2 недочета, при этом ошибки не должно быть в задаче;
Оценка "3" ставится, если в работе допущены 3-4 ошибки и 3-4 недочета;
Оценка "2" ставится, если в работе допущены 5 ошибок;
При оценке работ, включающих в себя решение выражений на порядок действий:
считается ошибкой неправильно выбранный порядок действий, неправильно выполненное арифметическое действие;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки;
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
При оценке работ, включающих в себя решение уравнений:
считается ошибкой неверный ход решения, неправильно выполненное действие, а также, если не выполнена проверка;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки;
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
При оценке заданий, связанных с геометрическим материалом:
считается ошибкой, если ученик неверно построил геометрическую фигуру, если не соблюдал размеры, неверно перевел одни единицы измерения в другие, если не умеет использовать чертежный инструмент для измерения или построения геометрических фигур;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки;
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
Примечание: за грамматические ошибки, допущенные в работе, оценка по математике не снижается.
Итоговая оценка знаний, умений и навыков
1. . За учебную четверть и за год знания, умения и навыки учащихся по математике в 1-4 классах оцениваются одним баллом. 2. Основанием для выставления итого вой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним придается наибольшее значение.
3. При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оценивались положительно.
Особенности организации контроля по математике.
Текущий контроль по математике можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить не реже одного раза в неделю в форме самостоятельной работы или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать натуральные числа, умения находить площадь прямоугольника и др.).
Тематический контроль по математике в начальной школе проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы: приемы устных вычислений, действия с многозначными числами, измерение величин и др. Среди тематических проверочных работ особое место занимают работы, с помощью которых проверяются знания табличных случаев сложения, вычитания, умножения и деления. Для обеспечения самостоятельности учащихся подбирается несколько вариантов работы, каждый из которых содержит 30 примеров (соответственно по 15 на сложение и вычитание или умножение и деление). На выполнение такой работы отводится 5-6 минут урока.
Итоговый контроль по математике проводится в форме контрольных работ комбинированного характера (они содержат арифметические задачи, примеры, задания по геометрии и др.). В этих работах сначала отдельно оценивается выполнение задач, примеров, заданий по геометрии, а затем выводится итоговая отметка за всю работу.
При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.
Нормы оценок за итоговые контрольные работы соответствуют общим требованиям, указанным в данном документе.
Используемая литература
Волкова, С. И. Математика. Комплект таблиц для начальной школы. 4 класс / С. И. Волкова. – М. : Дрофа, 2007.
1. Математика. 4 класс : учеб. для общеобразоват. учреждений с прил. на электрон. носителе : в 2 ч. / М. И. Моро [и др.]. – М. : Просвещение, 2013.
2. Волкова, С. И. Математика. 4 класс. Рабочая тетрадь : пособие для учащихся общеобразоват. учреждений : в 2 ч. / С. И. Волкова. – М. : Просвещение, 2013.
3. Волкова, С. И. Математика. Устные упражнения. 4 класс : пособие для учителей общеобразоват. учреждений / С. И. Волкова. – М. : Просвещение, 2013.
4. Волкова, С. И. Математика. Проверочные работы. 4 класс : пособие для учителей общеобразоват. учреждений / С. И. Волкова. – М. : Просвещение, 2013.
5. Волкова, С. И. Математика и конструирование. 4 класс : пособие для учащихся общеобразоват. учреждений / С. И. Волкова. – М. : Просвещение, 2012.
6. Моро, М. И. Для тех, кто любит математику. 4 класс : пособие для учащихся общеобразоват. учреждений / М. И. Моро, С. И. Волкова. – М. : Просвещение, 2011.