ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] « Математика (1-6 класс) » [ Алгебра ] [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

1 класс - 2 класс - 3 класс - 4 класс - 5 класс - 6 класс -

Математика, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) 2009

Математика, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) 2009

Страница № 009.

Учебник: Математика. 6 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. — 25-е изд., стер. — М.: Мнемозина, 2009. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, «9», 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

27.    Выберите из чисел 14, 21, 31, 42, 51, 63, 68, 75 те, которые:

и) кратны 7; б) кратны 17; в) не кратны 8; г) не кратны 2.

28.    Выполните деление с остатком: 385 : 13; 548 : 12; 3710 : 30.

29.    Площадь первого поля 27,3 га. Площадь второго поля на 4,8 га Меньше площади первого, а площадь третьего поля в 1,6 раза больше площади второго. Чему равна площадь всех трех полей вместе?

30.    Выполните действия:

I) 18,36 + 0,64 : 0,8;    в) 3,44 : 0,4 + 24,56;

I) 80•11 - 42 558 : 519; г) 684 • 245 - 675 • 246.

2. Признаки делимости на 10, на 5 и на 2

Всякое натуральное число, запись которого оканчивается цифрой 0, делится без остатка на 10. Чтобы получить частное, достаточно отбросить эту ^ифру 0.

Например, 280 делится без остатка на 10, так как 280 : 10 = 28.

При делении же числа 283 на 10 получаем неполное частное 28 и остаток 3 {Т. е. последнюю цифру записи этого числа). Поэтому если последняя цифра в ! |8писи натурального числа отлична от нуля, то это число не делится без остатка на 10.

Если запись натурального числа оканчивается цифрой О, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10. Остаток в этом случае равен последней цифре числа.

Число 10 = 2-5. Поэтому число 10 делится без остатка и на 2, и на 5. гсюда и любое число, запись которого оканчивается цифрой 0, делится без [остатка и на 5, и на 2.

Например, 60 = 6 • 10 = 6 • (2 ■ 5) = (6 • 2) • 5 = 12 • 5, значит, 60 : 5 = 12.

' А из того что 60 = 6 • (5 • 2) = (6 • 5) • 2 = 30 • 2, получаем, что 60 : 2 = 30.

Каждое число можно представить в виде суммы полных десятков и единиц, например: 246 = 240 + 6, 1435 = 1430 + 5. Так как полные десятки делятся На 5, то и все число делится на 5 лишь в том случае, когда на 5 делится число •диниц. Это возможно только тогда, когда в разряде единиц стоит цифра 0 или 5.

1Если запись натурального числа оканчивается цифрой О или 5, то это число делится без остатка на 5. Если же запись числа оканчива~ ется иной цифрой, то число без остатка на 5 не делится.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, «9», 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284



Все учебники по математике (1-6 класс):





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.