ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] « Математика (1-6 класс) » [ Алгебра ] [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

1 класс - 2 класс - 3 класс - 4 класс - 5 класс - 6 класс -

Математика, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) 2009

Математика, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) 2009

Страница № 229.

Учебник: Математика. 6 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. — 25-е изд., стер. — М.: Мнемозина, 2009. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, «229», 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

1308.    Решите уравнение:

а)    3(у - 5) - 2(у - 4) = 8;    в) (Злг - 6) - у (7х - 21) = 9;

б)    -5(5 - х) - 4х = 18;    г) 5,4(3i/ - 2) - 7,2(2у - 3) = 1,2.

1309.    Группа туристов 1 ч ехала на автобусе, а затем 6 ч шла пешком со скоростью, на 18 км/ч меньшей, чем скорость автобуса. Всего группа преодолела 67 км. Найдите скорость автобуса и туристов в пешем походе.

1310.    В трех классах 71 учащийся. В первом классе учащихся на

4 человека больше, чем во втором, и на 3 человека меньше, чем в третьем классе. Сколько учащихся в каждом классе?

1311.    Определите масштаб карты, если расстояние между двумя пунктами на местности 750 м, а на карте 25 мм.

1312.    Какой длины отрезком изображается на карте расстояние 6,5 км, если масштаб карты 1 : 25 ООО?

1313.    На карте отрезок имеет длину 12,6 см. Какова длина этого отрезка на местности, если масштаб карты 1 : 150 000?

42. Решение уравнений Пример 1. Решим уравнение 4 • (х + 5) = 12.

Решение. По правилу отыскания неизвестного множителя имеем х + 5 = = 12 : 4, т. е. х + 5 = 3. Это же уравнение можно получить, разделив обе части

данного уравнения на 4 или умножив обе части на Теперь легко найти значение х. Имеем х = 3 - 5, или х = -2.

Число -2 является корнем уравнения ж + 5 = 3и уравнения 4 • (х + 5) = 12, так как -2 + 5 = 3 и 4 • (-2 + 5) = 12.

I Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю.

Пример 2. Решим уравнение 2х + 5 = 17.

Решение. По правилу отыскания неизвестного слагаемого имеем 2х = = 17-5, т. е. 2х= 12. Уравнения 2х + 5 = 17 и 2х = 17 - 5 имеют один и тот же корень 6, так как 2-6 + 5 = 17 и2-6 = 17-5.

Уравнение 2х = 17-5 можно записать так: 2х = 17 + (-5). Видим, что корень уравнения 2х + 5 = 17 не изменяется, если перенести слагаемое 5 из левой части уравнения в правую, изменив его знак на противоположный.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, «229», 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284



Все учебники по математике (1-6 класс):





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.