ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009

Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009

Страница № 112.

Учебник: Алгебра. 7 класс: учеб. для общеобразоват. учреждений / [Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. — 18-е изд. — М. : Просвещение, 2009. — 240 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, «112», 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Проведем соответствующее доказательство. Допустим, что существует наибольшее простое число р. Составим произведение всех простых чисел от 2 до р включительно и обозначим его через а:

а = 2-3-5-. ..'р.

Рассмотрим число а +1:

а+1 = 2-3-5-...*р+1.

Число а+1 не является простым, так как оно больше р, а по предположению р — наибольшее простое число. Оно не является также составным, так как по свойству делимости суммы не делится ни на одно из простых чисел, входящих в произведение 2 -3 • 5 •... -р, а других простых чисел по предположению нет. Полученное противоречие показывает, что предположение неверно и наибольшего простого числа не существует.

Много раз делались попытки найти какое-либо выражение, значениями которого являются только простые числа. Рассмотрим, например, выражение F(n) = 2л2+ 29. Вычисляя его значения при п = 1, 2,

3, ..., найдем, что F(l)=3, F(2)=37, F(3) = 47, F(4)=61, F(5) = 79, F(6)= = 101, F(7)=127. Мы видим, что каждый раз получается простое число. Можно предположить, что значение выражения F(n) при любом натуральном п является простым числом. Однако это не так. Например, число F(29) = 2 • 292 + 29 не является простым, так как из свойства делимости суммы следует, что оно делится на 29. Вообще доказано, что не существует многочлена F(n) с целыми коэффициентами, значением которого при любом натуральном п является простое число.

Всякое составное число, как известно, можно представить в виде произведения простых чисел или, как говорят, разложить на простые множители и притом единственным способом, если не учитывать порядок множителей. Разложим, например, на простые множители число 360:

360 = 2-180 = 2-2-90 = 2-2-2-45 =

= 2-2-2-3-15 = 2-2-2-3-3-5.

При разложении числа на простые множители произведение одинаковых множителей обычно представляют в виде степени:

360 = 23-32-5.

Разложением чисел на простые множители удобно пользоваться при нахождении их наибольшего общего делителя или наименьшего общего кратного.

Найдем, например, наибольший общий делитель и наименьшее общее кратное чисел 504 и 2352. Разложив каждое из этих чисел на простые множители, получаем, что

504 = 23 • З2 • 7 и 2352 = 24-3-72.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, «112», 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.