ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009

Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009

Страница № 121.

Учебник: Алгебра. 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. — 16-е изд. — М.: Просвещение, 2009. — 271 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, «121», 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Рассмотрим, например, неравенство х + 2у > 4 и заменим его равносильным неравенством у> — 0,5х+2. Выберем произвольно значение х, например х — 2, и найдем соответствующее ему значение выражения -0,5л: + 2. Получим -0,5 -2 + 2 = 1. Пара чисел (2; 1) является решением уравнения у= —0,5х + 2, так как ее координаты удовлетворяют этому ура*шгнию. Любые пары чисел вида (2; у), где у ^ 1, например пары (2, 1,8), (2, 4), (2, 100) и т. д., являются решениями рассматриваемого неравенства. Мы нашли лишь некоторые решения неравенства у > -0,5х + 2. Чтобы найти все решения данного неравенства, будем рассуждать аналогично.

Пусть х0 — произвольно выбранное значение х. Вычислим соответствующее ему значение выражения -0,5х+2. Получим -0,5 • х0 + 2. Пара чисел (х0; у0), где у0 = -0,5х0 + 2, является решением уравнения у= -0,5л + 2. Тогда пары чисел (х0; у), где у > -0,5х0 + 2 (г. е. у > у0), и только эти пары, образуют множество решений данного неравенства.

Теперь выясним, что представляет собой множество точек, координаты которых являются решениями неравенства х + 2у > 4. Для этого построим прямую у=~0,5л+2, отметим на ней произвольную точку М(х0; у0) и проведем через нее прямую, перпендикулярную оси х (рис. 66). Координаты точки М удовлетворяют уравнению у = -0,5х + 2 (так как точка М принадлежит этой прямой), а координаты любой точки К(х0; у), где у> у0, т. е. точки, расположенной выше точки М, удовлетворяют неравенству у > -0,5х+ 2.

Значит, неравенством х + 2у > 4 задается множество точек координатной плоскости, расположенных выше прямой у=— 0,5х+2, т. е. открытая полуплоскс >сть (полуплоскость без граничной прямой) (см. рис. 66). Чтобы показать, что прямая у= -0,5л: + 2 не принадлежит полуплоскости, она на рисунке изображена штриховой линией.

Можно сдела гь такой вывод. Прямая х + 2у = 4 разбивает множество не принадлежащих ей точек координатной плоскости на две об. [асти: об, iaci ь, расположенную выше данной прямой, и область, расположенную ниже данной прямой. Координаты точек первой области удовлетворяют неравенству х + 2у > 4, а координаты точек второй области удовлетворяют неравенству х+ 2у< 4.

Мы выяснили на частном примере, что представляет собой множество точек координатной плоскости, удовлетворяющих неравенствам ах + by < с и ах + by > с, в случае, когда b * 0.

Рассмотрим примеры неравенств с двумя переменными второй степени.

Рис. 66


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, «121», 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.