|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
[ Алгебра ]
« Геометрия »
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
Страница № 297.
Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, «297», 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
OCR-версия страницы из учебника (текст страницы, которая находится выше):
ем некоторое отображение фигуры Ф на фигуру Фг. Более того, мы считаем, что при этом не только точки фигуры Ф, но и любая точка плоскости отображается в определенную точку плоскости, т. е. наложение — это отображение плоскости на себя.
Однако не всякое отображение плоскости на себя мы называем наложением. Наложения — это такие отображения плоскости на себя, которые обладают свойствами, выраженными в аксиомах (см. приложение 1, аксиомы 7-13). Эти аксиомы позволяют доказать все те свойства наложений, которые мы себе представляем наглядно и которыми пользуемся при доказательстве теорем и решении задач. Докажем, например, что при наложении различные точки отображаются в различные точки.
В самом деле, предположим, что это не так, т. е. при некотором наложении какие-то две точки А и В отображаются в одну и ту же точку С. Тогда фигура Фг, состоящая из точек Л и Б, равна фигуре Ф2, состоящей из одной точки С. Отсюда следует, что Ф2=Ф1 (аксиома 12), т. е. при некотором наложении фигура Ф2 отображается в фигуру Фг. Но это невозможно, так как наложение — это отображение, а при любом отображении точке С ставится в соответствие только одна точка плоскости.
Из доказанного утверждения следует, что при наложении отрезок отображается на равный ему отрезок. Действительно, пусть при наложении концы А и В отрезка АВ отображаются в точки Ах и Вv Тогда отрезок АВ отображается на отрезок А1В1 (аксиома 7), и, следовательно, отрезок АВ равен отрезку АгВг. Так как равные отрезки имеют равные длины, то наложение является отображением плоскости на себя, сохра-
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, «297», 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил.
Все учебники по геометрии:
Учебники по геометрии за 7 класс
- Геометрия, 7 класс (В. В. Шлыков) 2011
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 8 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 8 класс (Г.П. Бевз, В.Г. Бевз, н.Г. Владимирова) 2008
Учебники по геометрии за 9 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 10 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10 класс (Е. В. Потоскуев, Л. И. Звавич) 2008
- Геометрия, 10 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
- Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
Учебники по геометрии за 11 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
- Геометрия, 11 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
|
|