|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010Страница № 361.Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, «361», 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
OCR-версия страницы из учебника (текст страницы, которая находится выше):СС= - а + у Ъ . 787. -^ а + Ъ . 790. Указание. Воспользоваться задачей 785. 793. 10 см. 794. 6,8 см и 10,2 см. 795. 30 см. 796. 16 см. 798. 60°, 60°, 120°, 120°. 799. 7 см. 801. Указание. Если векторы х л у не коллинеарны, то воспользоваться правилом треугольника сложения векторов, и если они коллинеарны — задачей 800. 802. -a + jT. 803. ХУ=--|7+-|Т, МР = -~а + Ъ. 804. СК=~а, KD=b - а , БС=уЬ-уа. 809. ^ а . 810. Указание. Воспользоваться первой теоремой п. 72. Задачи повышенной трудности 811. Указание. Продолжив через одну стороны данного шестиугольника, получить равносторонний треугольник. 812. Указание. Сначала доказать, что а1 + а2 + а3 = а3 + а4 + а5 = а5 + ад + аг Затем построить равносторонний треугольник, сторона которого равна а1 + а2 + а3, и воспользоваться задачей 811. 814. Указание. Пусть ABCD — выпуклый четырехугольник. Учесть, что вершина С лежит внутри угла BAD, поэтому луч АС проходит внутри этого угла и, следовательно, пересекает отрезок BD. Аналогично рассмотреть луч BD и угол ABC. 815. Указание. Если данный четырехугольник ABCD выпуклый, то воспользоваться задачей 814. Если ABCD — невыпуклый четырехугольник и, например, прямая АВ пересекает сторону CD в точке М, то рассмотреть два случая: А — точка отрезка MB и В — точка отрезка AM. 816. -j . Указание. Пусть Р — точка пересечения прямых DE и АВ, DO || АС и О е АВ. Сначала доказать, что АРЕ, AOD и POD — равнобедренные треугольники. 817. Указание. Сначала до- Ь+с Ь+с-а казать неравенства т< и т> —^— » гДе а» &» с — стороны треугольника, та — медиана, проведенная к стороне а. 818. Указание. Сначала доказать, что диагонали данного четырехугольника точкой пересечения делятся пополам. 819. Прямая, параллельная данной прямой. 820. Указание. Воспользоваться задачами 388, а и 389, а. 821. Указание. Воспользоваться задачей 428. 822. Указание. Пусть Ov 02, 03, 04 — точки пересечения диагоналей квадратов, построенных на сторонах АВ, ВС, CD и DA данного параллелограмма ABCD. Сначала доказать равенство треугольников A0j04, BOfl2, С0203, D0304. 823. Указание. На луче АВ отложить отрезок AN, равный отрезку AM, провести отрезок MN и провести высоту NS треугольника AMN. Затем доказать, что AANS = AMAD и ААКВ = ANMS. 824. 90°. Указание. Пусть D1 — точка, симметричная точке D относительно точки Е. Сначала доказать, что AACDX — равнобедренный прямоугольный треугольник. 825. 30°. Указание. На луче AM отложить отрезок АК = АВ и, рассмотрев АВКС, доказать, что точка К совпадает с точкой М. 826. Указание. Сначала доказать, что АВКР = ААВС= = ACQT. 827. Указание. Сначала построить равнобедренный треугольник, основание которого равно сумме оснований трапеций, а боковая сторона равна диагонали трапеции. 828. а) Указание. Сначала Доказать, что ось симметрии пересекает одну из сторон треугольника. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, «361», 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.