ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010

Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010

Страница № 370.

Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, «370», 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

1121. 0,75 мм. 1122. 5,6л дм3-17,6 дм3. 1123. г2 (я-2). 1124. Площадь наименьшего круга равна я, а площади колец равны Зя, 5л, 7я.

I к с    4 — тс

1126. = 262 см2. 1127. . 1128. —— а2. 1129. а) 20; б) 9; в) 5; г) 6. ИЗО. дм. 1131. 6,72 см. 1132. а) ; б) ^. 1135.6 см; 54 V3 см2.

О    4

1137. 330 км. 1138. а)-15,1 см; б) па sin а. 1139. ~ 4,4 км.

1141. ~-(20+9V^) см. 1142. —р71 см. 1144. Указание. Пусть

ABCDEFGH — искомый восьмиугольник, а О —центр описанной окружности. Сначала построить равнобедренный треугольник АВО. 1145. Указание. Использовать теорему Пифагора. 1146. Указание. Сначала вписать в окружность правильный треугольник и правильный шестиугольник.

Глава XIII

1151. Указание. Доказать методом от противного. 1154. Указание. Воспользоваться теоремой п. 115. 1155. Указание. Доказательство провести методом от противного (см. доказательство теоремы п. 115). 1157. Указание. Воспользоваться задачами 1156 и 1051. 1158. Указание. Сначала построить образы каких-нибудь двух точек прямой Ъ. 1159. F — четырехугольник. 1160. Указание. Задача решается аналогично задаче 1158. 1161. F — треугольник. 1172. Указание. Пусть М — произвольная точка прямой АВ, а М' — ее образ. Используя равенства AM =АМ', ВМ = ВМ', доказать, что точки М и М' совпадают. 1173. Указание. Воспользоваться задачей 1155. 1174. а) Указание. Воспользоваться задачей 1157. 1175. Указание. Использовать симметрию относительно прямой а. 1176. Указание. Использовать точки Dх и £>2, симметричные точке D относительно прямых АВ и ВС.

1178.    Указание. Использовать параллельный перенос на вектор AD.

1179.    Указание. Учесть, что высоты треугольника, на который отображается треугольник ABS при параллельном переносе на вектор ВС , пересекаются в одной точке. 1180. Указание. Использовать поворот вокруг точки О на угол в 120°. 1181. Указание. Сначала построить прямую, симметричную одной из данных прямых относительно точки О. 1182. Указание. Пусть ABCD — искомая трапеция с основаниями AD и ВС. Сначала построить треугольник ACDV где Dl — точка, в которую

отображается точка D при параллельном переносе на вектор ВС . Глава XIV

1184. а) 6, 12, 8; б) 4, 6, 4; в) 8, 12, 6. 1187. а) Нет; б) нет; в) нет; г) да;

д) нет. 1189. а) Параллелограмм ABCJ)^ б) параллелограмм АССХАХ. 1190. Искомой точкой является точка пересечения прямых: a) MN и ВС; б) AM и АХВХ. 1191. Указание. Сначала через середину ребра CD провести прямую, параллельную BXDV 1192. Указание, а) Сначала через точку М провести прямую, параллельную NK, и далее рассмотреть отдельно случаи, когда эта прямая пересекается с ребром ВС и когда она пересекается с ребром ССг; б) сначала через точку N провести прямую а, параллельную МК, и далее рассмотреть отдельно


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, «370», 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.