|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010Страница № 363.Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, «363», 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
OCR-версия страницы из учебника (текст страницы, которая находится выше):К и С. Затем воспользоваться задачей 556. 849. Указание. Воспользоваться утверждением: отрезок, соединяющий основания двух высот остроугольного треугольника, отсекает от него треугольник, подобный этому треугольнику. 850. Указание. Сначала доказать, что АМВС °° AMFK и A MAC °° АМЕК, где М — точка пересечения прямых СК и АВ. 851. . Указание. Пусть ABC — данный треугольник, a D — точка пересечения диагоналей квадрата, построенного на гипотенузе ВС. На продолжении луча СА отметить точку Е так, чтобы LCDE = Z.ADB. Сначала доказать, что AABD = AECD. 852. Указание. Пусть BD и СЕ — биссектрисы треугольника ABC. Сначала доказать, что Z.C = 2 Z.B, Z.B = 2ZA, а затем доказать, что A ABC °° A BDC и ААВС™ А АСЕ. 853. Указание. Пусть Е и F — точки пересечения МР и MQ с ОВ и ОА. Воспользоваться подобием треугольников OPR и OFQ, OQS и ОЕР для доказательства того, что треугольники Oi£F и ORS подобны. 854. Указание. Воспользоваться тем, что АН — медиана треугольника, подобного треугольнику BDH. 855. Указание. а) Рассматривая подобные треугольники, сначала доказать, что AD2 = АС •АЕ, DB2 = ВС * BF и CD2 = AD • DB. б) Применить теорему Пифагора к треугольникам AED и DFB. в) Воспользоваться подобием треугольников AED и АСВ. 856. a) ZA= 75°, Z.B = 135°, Z.C = 60°, AD = 90°. б) Указание. Учесть, что треугольники АВР и DAB подобны. 857. Указание. Воспользоваться задачей 567. 858. Указание. Пусть MN — отрезок, соединяющий середины сторон AD и ВС данного четырехугольника ABCD. Отметить точку Dv симметричную точке D относительно точки АГ, и рассмотреть AABDr 859. Указание. Воспользоваться задачей 858. 860. Указание. Воспользоваться задачей 858. 861. Указание. Воспользоваться теоремой о средней линии треугольника и задачами 404 и 820. 862. Указание. Продолжить перпендикуляры AM и АК до пересечения с прямой ВС в точках D и Е и сначала доказать, что МК — средняя линия треугольника DAE. 863. Указание. Воспользоваться задачей 435. 864. Указание. Воспользоваться задачей 863. 865. Указание. Пусть точка N — середина АС. Доказать сначала, что треугольники МВС и MNC равны и BN —средняя линия треугольника АКС. Далее воспользоваться следствием 2, п. 52. 866. Указание. Через концы одной из медиан треугольника ABC провести прямые, параллельные двум другим медианам, и воспользоваться тем, что образовавшийся при этом треугольник равен треугольнику EFG. 867. “jr. 868. Указание. Воспользоваться подобием треугольников MND и МАВ, MAD и МРВ. 869. Указание. Пусть ABCD — равнобедренная трапеция, X — искомая точка большего основания AD, а АВ — данная боковая сторона. Сначала доказать, что АХ =п,п воспользоваться задачей 584. 870. Решение. На произвольном луче с началом в точке А откладываем отрезок ACV равный отрезку АС, и на луче CjA от точки Сг — отрезок СгВ1У равный отрезку СВ (сделайте рисунок). Убедитесь в том, что прямая, проходящая через точку С1 и параллельная прямой ВВг, пересекает прямую АВ в искомой точке D. Задача не имеет решения, если С — середина отрезка АВ. 871. Указание. Сначала построить какой-нибудь равнобедренный треугольник по данному углу. 872. Указание. Пусть ABC — искомый треугольник, у которого даны стороны АВ, АС и биссектриса AD. На прямой AD отметить точку Е так, чтобы BE || АС. Воспользовавшись Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, «363», 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
Учебник: Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.