ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001

Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001

Страница № 028.

Учебник: Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений. Мордкович А. Г. — 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, «28», 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание). Выполним преобразования по действиям, опираясь на те правила, алгоритмы, что были выработаны в предыдущих параграфах.

_2а___4д2 = _2о^з 4а2 =

2 а+Ь 4а2+4ab+b2 2 а + Ь (2 а + Ь)2

_ 2а(2а + Ь)-4а2 _ 4д2+2дЬ-4д2 _ 2ab

(2а + Ь)2    (2а + Ь)2 (2а+Ь)2 '

_    I 2а + Ь

2 а    1    2 а    I1-

2) , 2 ,2 +

4 а22 Ь-2а (2а-Ь)(2а + Ь) 2 а-Ь 2а-(2а + Ь) 2а-2а-Ь    -Ъ

(2а-Ъ)(2а + Ь) (2а-Ь)(2а + Ь) (2а-Ь)(2а + Ь) ’

2аЬ _ -Ь___ 2дЬ(2а-Ь)(2а+Ь) _

’ (2а + Ь)2 ' (2а-Ъ)(2а + Ь) “ (2а + Ь)2 Ь

2а{2а-Ь) = -(4д2-2дЬ) = 2дЬ-4д2 2д+Ь    2д+Ь    2а+Ь

2дЬ—4д22 _ 2дЬ-4а2+8д2 _

’ 2 а + Ь + 2 а + Ь    2а

2аЬ+4д2 2а(Ь+2а)

= -Г" = —5-7Г = - <■

2д + Ь    2д + Ь

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и Ь, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; Ь), кроме тех, при которых выполняется хотя бы одно из равенств:

2а~Ь = 0, 2а + Ь = 0, Ъ = 0.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, «28», 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.