ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001

Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001

Страница № 114.

Учебник: Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений. Мордкович А. Г. — 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, «114», 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Рассмотрим несколько таких уравнений.

Пример 1. Решить неполные квадратные уравнения:

а)    2л;2 - 7х = О'    б) - х2 + 5х = 0;    в) х2 - 16 = 0; г) - 2хг + 7 = 0; д) Зх2 + 10 = 0; е) 5х2 = 0.

Р е ш е н и е. а) Имеем

2 - 7х = 0; х(2х - 7) = 0.

Поэтому либо х = 0, либо 2х - 7 = 0, откуда находим х = 3,5. Итак, уравнение имеет два корня: хг = 0, х2 = 3,5.

б)    Имеем

- х2 + 5х = 0; -х(х - 5) = 0.

Уравнение имеет два корня: хг = 0, х2 — 5.

в)    Имеем

х2 - 16 = 0; х2 = 16.

Ранее, в § 15, мы уже говорили о том, что уравнение вида

х2 = а, где а > 0, имеет два корня: Ja и - Ja ■ Значит, для уравнения х2 = 16 получаем хг = 4, х2 = - 4 (мы учли, что JlQ = 4). Допускается более экономная запись: хх 2 = +4.

г)    Имеем

-2х2 + 7 = 0; 2х2= 7; х2=3,5.

Уравнение имеет два корня: хг = ^3,5 , х2 = - ^ 3,5 . И в этом

случае можно записать короче: х12 = ±J3,5 .

д)    Имеем

Зх2 + 10 = 0; Зх2 = - 10.

Так как выражение Зх2 неотрицательно при любых значениях х, то уравнение Зх2 = - 10 не имеет корней. Иными словами, нет ни одного числа, подстановка которого вместо переменной х обратила бы это уравнение в верное числовое равенство.

Иногда в таких случаях уточняют: нет действительных корней. Дело в том, что в математике, кроме действительных чисел,

о которых мы впервые упомянули на с. 92, а подробнее


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, «114», 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.