ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010

Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010

Страница № 216.

Учебник: Алгебра: сб. заданий для подгот. к гос. итоговой аттестации в 9 кл. / [Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.]. — 5-е изд. — М.: Просвещение, 2010. — 239 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, «216», 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

шагов), не содержащее неверных утверждений, все выкладки которого правильны, должно рассматриваться как решение без недочетов.

Надо учитывать, что возможны разные формы ответа. Можно употреблять любую принятую запись, главное, чтобы она была грамотной. Так, при решении квадратного уравнения можно просто перечислить его корни: 2; -3; или записать хг = 2, х2 = -3. При решении неравенства ответ может быть дан как в виде промежутка, например, [-3; +оо), так и в виде простейшего неравенства х > -3. При записи области определения функции можно использовать теоретико-множественную символику, например (-оо; 0) U (0; 1) U (1; +оо), или писать короче: х 5й 0 и дс * 1.

Многие задачи, предлагаемые на экзамене и содержащиеся в разделе II сборника, допускают разные способы решения. Ученик вправе решать задачу любым из них. Соображения типа «можно решить более рационально, более красиво» и пр. при оценивании не играют роли. Однако в ходе подготовки целесообразно показывать учащимся такие решения, знакомить их с некоторыми общими приемами решения тех или иных видов задач, что будет служить пополнению их «математического багажа» и в конечном итоге их математическому развитию.

Приведем примеры решения некоторых задач из различных блоков раздела II, дополнив их методическими комментариями.

■ Пр и мер 1 (№ 1.42). Представьте выражение х(х + 1)(х + 2)(х + 3) - 15

в виде произведения двух многочленов.

Преобразование «в лоб» ни к чему не приведет. Поэтому воспользуемся следующим приемом: перемножим попарно крайние и средние множители — при этом полученные произведения будут содержать одинаковые члены:

х(х + 1)(х + 2)(х + 3) - 15 = (х2 + Зх)(х2 + Зх + 2) - 15.

Введем новую переменную t = х2 + Зх. В результате получим квадратный трехчлен t(t + 2) — 15, для которого способ разложения на множители известен:

*(* + 2) - 15 = t2 - 2t - 15 = (t - 3Xt + 5).

Вернувшись к переменной х, получим (х2 + Зх - 3)(х2 + Зх + 5).

Вот как может выглядеть рассмотренное решение в работе учащегося:

х(х + 1)(х + 2)(х + 3) - 15 = х(х + 3)(х + 1)(х + 2) -

- 15 = (х2 + Зх)(х2 + Зх + 2) - 15.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, «216», 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.