|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 6 класс - 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Физика, 9 класс (Кикоин И. К., Кикоин А. К) 1992Страница № 035.Учебник: Физика: Учеб. для 9 кл. сред. шк. - 2-е изд. Кикоин И. К., Кикоин А. К. - М.: Просвещение, 1992. - 191 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, «35», 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
OCR-версия страницы из учебника (текст страницы, которая находится выше):Если промежуток времени, соответствующий отрезку cd, достаточно мал, то в течение этого малого времени скорость не может заметно измениться — движение в течение этого малого промежутка времени можно считать равномерным. Полоска abed поэтому мало отличается от прямоугольника, а ее площадь численно равна проекции перемещения за время, соответствующее отрезку cd (см. § 7). Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время t численно равно площади трапеции ОАВС. Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований численно равна vox, другого—vx (см. рис. 40). Высота же трапеции численно равна t. Отсюда следует, что проекция sx перемещения выражается формулой Vox + Vx . S*=—- *■ Но vx = vox + axt. Значит, s* = Vox + Vox + axt =-x-1. Отсюда (1) Если проекция vox начальной скорости равна нулю (в начальный момент времени тело покоилось!), то формула (1) принимает вид: axt2 (2) Г рафик скорости такого движения показан на рисунке 41. При пользовании формулами (1) И (2) НуЖНО ПОМНИТЬ, ЧТО Sx, Vox и Vx могут быть как положительным», так и отрицательными — ведь_ это проекции векторов s, vo и v на ось X. Таким образом, мы видим, что при равноускоренном движении перемещение растет со временем не так, как при равномерном движении: теперь в формулу входит квадрат времени. Это значит, что перемещение со временем растет быстрее, чем при равномерном движении. Как зависит от времени координата тела? Теперь легко получить и формулу для вычисления координаты х в любой момент времени для тела, движущегося равноускоренно. В § 5 мы видели, что проекция sx вектора перемещения равна изменению координаты х—х0■ Поэтому формулу (1) можно записать в виде х — Xo = voxt + -у-- Отсюда (3) Из формулы (3) видно, что, для того чтобы вычислить координату х в любой момент времени t, нужно знать начальную координату, начальную скорость и ускорение. Формула (3) описывает прямолинейное равноускоренное движение, подобно тому как формула (2) Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, «35», 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
Учебник: Физика: Учеб. для 9 кл. сред. шк. - 2-е изд. Кикоин И. К., Кикоин А. К. - М.: Просвещение, 1992. - 191 с.: ил. Все учебники по физике:
Учебники по физике за 6 классУчебники по физике за 7 классУчебники по физике за 8 классУчебники по физике за 9 классУчебники по физике за 10 классУчебники по физике за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.