ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Страница № 035.

Учебник: Геометрия. 10—11 класс: учеб. для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М.: Мнемозина, 2008. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, «35», 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Доказательство. Отложим векторы а, В и с от точки О и обозначим их концы, соответственно, А, В и С. Из условия теоремы следует, что точки А, В и С лежат в одной плоскости. Если точка С принадлежит прямой ОА, то векторы а и с коллинеарны. Требуемое равенство выполняется при s = 0. Аналогично, если точка С принадлежит прямой ОВ, то векторы Ь и с коллинеарны. Требуемое равенство выполняется при t = 0.

Пусть теперь точка С не принадлежит прямым ОА и ОВ. Проведем через нее прямые, параллельные прямым ОА и ОВ. Соответствующие точки пересечения обозначим А' и В' (рис. 41). Тогда ОА' = tOA = tat OS = sOB — sb, и, следовательно, с =ОС — ОА'±ОВ?~ta+sb . ■

Упражнения___________в

1.    В параллелепипеде A...Dr назовите пары коллинеарных векторов.

2.    В параллелепипеде А...назовите тройки компланарных векторов.

3.    Векторы а и 6, В и с коллинеарны. Коллинеарны ли векторы а и с?

3 4. Векторы а , b и с; а, b и d компланарны. Компланарны ли векторы

а, с и d?

5.    Докажите, что два вектора коллинеарны тогда и только тогда, когда они лежат на параллельных прямых или одной прямой.

6.    Докажите, что три вектора компланарны тогда и только тогда, когда они лежат на прямых, параллельных одной плоскости.

7.    Векторы а + В и а — Ъ коллинеарны. Докажите, что векторы а и Ъ коллинеарны.

8.    Векторы а и В коллинеарны \а' > |Ь|. Какое направление имеет вектор а + В ? Чему равна его длина?

9.    В тетраэдре ABCD точки Мг, М2 являются точками пересечения медиан, соответственно, граней ADB и BDC. Докажите, что векторы

МгМ2 и АС коллинеарны. Найдите отношение длин этих векторов.

10. Точки Е и F являются серединами, соответственно, ребер AD и В1С1 параллелепипеда A...D1. Докажите, что векторы СЕ, AF и BBL компланарны.

*11. Докажите, что если выполняется равенство ОС = ЮА 4- (1 - £)ОВ, то точки А, В и С принадлежат одной прямой. Причем если 0 < t < 1, то точка С лежит между А и В.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, «35», 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.