ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Страница № 158.

Учебник: Геометрия. 10—11 класс: учеб. для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М.: Мнемозина, 2008. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, «158», 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Упражнения

1. Вершинами пирамиды являются все вершины одного основания и одна вершина другого основания призмы. Какую часть объема призмы составляет объем пирамиды?

~ 2. Найдите объем пирамиды, высота которой Л, а в основании — прямоугольник со сторонами а и Ь.

° 3. Найдите объем правильной треугольной пирамиды, сторона основания которой равна а, высота — h.

° 4. Найдите объем правильной четырехугольной пирамиды, высота которой равна h, а диагональ основания — d.

° 5. Определите объем правильной четырехугольной пирамиды, если ее диагональным сечением является правильный треугольник со стороной, равной 1.

6.    Напишите формулу объема правильной четырехугольной пирамиды со стороной основания а и высотой h.

7.    Найдите объем тетраэдра с ребром, равным 1.

8.    Напишите формулу объема правильной треугольной пирамиды со стороной основания о и боковым ребром Ъ.

9.    В правильной четырехугольной пирамиде высота 3 м, боковое ребро 5 м. Найдите ее объем.

10.    Объем правильной шестиугольной пирамиды 6 см3. Сторона основания 1 см. Найдите боковое ребро.

11.    Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно Ь. Найдите объем пирамиды.

12.    Напишите формулу объема правильной л-угольной пирамиды со стороной основания а и высотой h.

13.    Как изменится объем правильной пирамиды, если высота ее будет увеличена в п раз, а сторона основания уменьшена во столько же раз?

14.    Найдите объем треугольной пирамиды, если длина каждого ее бокового ребра равна ft, а плоские углы при вершине равны 60°, 90° и 90е.

15.    Пирамида, объем которой равен V, а в основании лежит прямоугольник, пересечена четырьмя плоскостями, каждая из которых проходит через вершину пирамиды и середины смежных сторон основания. Определите объем оставшейся части пирамиды.

16.    В куб с ребром, равным 1, вписан правильный тетраэдр таким образом, что его вершины совпадают с четырьмя вершинами куба. Определите объем тетраэдра.

17.    Найдите объем октаэдра с ребром, равным 1.

18.    Центры граней куба, ребро которого равно 1, служат вершинами октаэдра. Определите его объем.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, «158», 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.