ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008

Страница № 071.

Учебник: Геометрия. 10—11 класс: учеб. для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М.: Мнемозина, 2008. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, «71», 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

через точку пересечения прямой а с плоскостью Р проведем прямую Ъ, перпендикулярную прямой с. Через прямые а и b проведем плоскость у. Прямая с будет перпендикулярна плоскости у, так как она перпендикулярна двум пересекающимся прямым а и Ъ в этой плоскости. Поскольку прямая а перпендикулярна плоскости (3, то угол, образованный а и Ь, прямой. Он является линейным углом соответствующего двугранного угла. Следовательно, плоскости аир перпендикулярны. ■

Воспользуемся этим признаком для доказательства того, что боковые грани прямой призмы перпендикулярны ее основаниям.

Действительно, как было доказано ранее, боковые ребра прямой призмы перпендикулярны основаниям. Боковые грани проходят через боковые ребра и, следовательно, также перпендикулярны основаниям прямой призмы.

Упражнения    ___ _

1.    Верно ли, что две плоскости, перпендикулярные третьей, параллельны?

2.    Верно ли, что прямая и плоскость, перпендикулярные другой плоскости, параллельны между собой?

3.    Сколько плоскостей, перпендикулярных данной плоскости, можно провести через данную прямую?

4.    Плоскость а перпендикулярна плоскости (3. Будет ли всякая прямая плоскости а перпендикулярна плоскости Р?

5.    Две плоскости перпендикулярны. Укажите возможные случаи взаимного расположения прямой, лежащей в одной из этих плоскостей, относительно прямой, лежащей в другой плоскости. (Проиллюстрируйте свой ответ на модели.)

6.    Плоскость и прямая параллельны. Верно ли утверждение о том, что плоскость, перпендикулярная данной плоскости, перпендикулярна и данной прямой?

7.    Плоскость и прямая параллельны. Будет ли верно утверждение о том, что плоскость, перпендикулярная прямой, перпендикулярна и данной плоскости?

8.    Верно ли, что плоскость, проходящая через наклонную к другой плоскости, не перпендикулярна этой плоскости?

9.    Докажите, что пересекающиеся грани прямоугольного параллелепипеда перпендикулярны.

10.    Докажите, что диагональные сечения АА1С1С и BB^DXD куба А...-Dj перпендикулярны.

11.    Докажите, что через любую точку пространства проходит плоскость, перпендикулярная данной плоскости. Сколько таких плоскостей?


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, «71», 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.