|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008Страница № 229.Учебник: Геометрия. 10—11 класс: учеб. для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М.: Мнемозина, 2008. — 288 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, «229», 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288
OCR-версия страницы из учебника (текст страницы, которая находится выше):Для этого рассмотрим точки D и Е, симметричные точке Сх относительно прямых АС и ВС. Тогда 5jC, = BXD, ATCj = Аг£, и, следовательно, периметр треугольника АХВХСХ будет равен длине ломаной DByAxE. Ясно, что длина этой ломаной наименьшая, если точки Вх, Ах лежат на прямой DE. Будем теперь менять положение точки Сл и искать такое положение, при котором периметр соответствующего треугольника АХВХСХ наименьший. Так как точка D симметрична Сх относительно АС, то CD = СС, и ZACD = ZACCX. Аналогично, СЕ = ССХ и АВСЕ = ZBCCг. Следовательно, треугольник CDE равнобедренный. Его боковая сторона равна ССХ. Основание DE равно периметру р треугольника АХВХСХ. Угол DCE равен удвоенному углу АСВ треугольника ABC и, значит, не зависит от положения точки Cj. В равнобедренном треугольнике с данным углом при вершине основание тем меньше, чем меньше боковая сторона. Поэтому наименьшее значение периметра р достигается в случае наименьшего значения ССХ. Это значение принимается в случае, если СС1 является высотой треугольника ABC. Таким образом, искомой точкой Сх на стороне АВ является основание высоты, проведенной из вершины С. Заметим, что мы могли бы фиксировать сначала не точку Сх, а точку Ах или точку Вх и получили бы, что А и В, являются основаниями соответствующих высот треугольника ABC. Из этого следует, что искомым треугольником наименьшего периметра, вписанным в данный остроугольный треугольник ABC, является треугольник, вершинами которого служат основания высот треугольника ABC. т Рассмотрим теперь замечательные точки и линии треугольника. К числу таких точек, изучаемых в школьном курсе геометрии, относятся: а) точка пересечения биссектрис (центр вписанной окружности); б) точка пересечения серединных перпендикуляров сторон (центр описанной окружности); в) точка пересечения высот (ортоцентр); г) точка пересечения медиан (центроид). Добавим к ним некоторые другие замечательные точки и линии. 8а Геометрия 10-11 кл. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, «229», 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288
Учебник: Геометрия. 10—11 класс: учеб. для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М.: Мнемозина, 2008. — 288 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.