ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Страница № 052.

Учебник: Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин]. — 5-е изд. — М.: Просвещение, 2005. — 285 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, «52», 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Академии наук. Свои основные научные работы Эйлер написал в Петербурге. Он так описывает роль России в своем творчестве: «Его королевское величество (Фридрих II) недавно меня спрашивал, где я изучил то, что знаю? Я, согласно истине, ответил, что всем обязан моему пребыванию в Петербургской Академии наук».

Л. Эйлер написал учебник «Полное введение в алгебру», по образцу которого в дальнейшем писались другие учебники алгебры.

В прошлом веке многие задачи теории чисел были решены великим русским ученым академиком Пафнутием Львовичем Чебышевым (1821 —1894). Он внес большой вклад и в другие направления математики, а также механики, в теорию вероятностей, теорию механизмов, теорию функций и т. д.

В XX веке крупнейшим представителем теории чисел был советский математик академик Иван Матвеевич Виноградов (1891 —1983), директор математического Института Академии наук СССР.

Приведем примеры отдельных решенных и нерешенных проблем в теории чисел.

П. Л. Чебышев показал, что среди натуральных чисел от п до 2п (п> 1) имеется хотя бы одно простое число.

И. М. Виноградов доказал для достаточно больших чисел проблему Гольдбаха, остававшуюся нерешенной 200 лет: любое нечетное число, большее 5, есть сумма трех простых чисел. Однако для всех нечетных чисел проблема Гольдбаха до сих пор не решена.

До сих пор не подтверждено также высказывание Эйлера (проблема Эйлера): каждое четное число, большее 4, можно представить как сумму двух простых чисел.

Математиков давно уже занимает следующий вопрос. Пусть N— натуральное число, a a(N)—количество простых чисел, не превышающих N. Надо возможно точнее оценить число a(N). Существенный вклад в решение этого вопроса внес П. Л. Чебышев.

В связи с необходимостью измерять различные величины — длины, площади, объемы, массы и др., наряду с натуральными числами возникли дробные или положительные рациональные числа. Дробные числа использовались математиками еще до новой эры. Результаты практических измерений обыкновенно даются рациональными числами, выражающими приближенно измеряемую величину. При этом широко употребляют конечные десятичные дроби.

По-видимому, впервые десятичные дроби появились в Китае и связано это с десятичной системой мер, которая существовала в Китае еще во II веке до н. э.

В 1427 году самаркандский математик и астроном Джемшид ибн Масуд аль-Каши подробно описал систему десятичных дро


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, «52», 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.