ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Страница № 232.

Учебник: Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин]. — 5-е изд. — М.: Просвещение, 2005. — 285 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, «232», 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

и после подстановки -=- вместо х получилось уравнение относи-

О

3

тельно у\ 3# + 2 = 0, откуда у = ——.

Решая первое уравнение системы (4) относительно у, находим: у= — . Подставляя это значение во второе уравнение, по-

з

лучаем: 0х + 0 = 0. Это показывает, что значение у=--^ удовлетворяет обоим уравнениям одновременно при любом х. Итак, всевозможные решения системы (4) определяются парами

(^х\ —где х — любое число.

Решая первое уравнение системы (5) относительно х и подставляя полученное значение 2 во второе уравнение, приходим к уравнению —1=0, показывающему, что система (5) противоречива.

Рассмотрим первое уравнение системы (6). Если ЬХФ0, то у можно выразить через х. Получим выражение вида y = kx + l. Подставляя это выражение во второе уравнение системы, получим уравнение 0х + с2 = 0. Оно не имеет решений, если с2Ф0. Если с2 = 0, то все решения системы (6) имеют вид (х\ у), где

/ а\ с\ \ х — любое число, a y = kx-\-l (/г = —— ; /=——1.

1069°. Может ли система двух линейных уравнений с двумя неизвестными не иметь решений; иметь одно решение; иметь бесконечно много решений? Приведите примеры.

1070°. Можно ли любую систему двух линейных уравнений с двумя неизвестными решить способом подстановки?

1071.    Является ли система уравнений противоречивой; имеющей бесконечно много решений; имеющей единственное решение:

ч /* + */ = 4. к\\х= 2'

1 * + </ = 9;    \х + у = 2?

Решите систему уравнений (1072—1073):

Г х = 3,    [2х-\-у — 7 = 0,

1072.    а) , ’ А    б) \ \

\ х-\-у — 4 — 0;    \ х = — 2;

Г Зх —# —8 = 0,    Г 3* + 2# —2 = 0,

{ у - I =0;    r)U-5.

Г 4 jc —|— 4г/ = 2,    [2х-\-у=\,

1073. а) \ п / ,    б) \ л У '

\ 2х+2г/ = 1;    \ 2х—у= 1;

ч / х-+у — 3,

В) { 3х+3г/ = 6;    Г)


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, «232», 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.